scispace - formally typeset
Search or ask a question
Topic

Latency (engineering)

About: Latency (engineering) is a research topic. Over the lifetime, 7278 publications have been published within this topic receiving 115409 citations. The topic is also known as: lag.


Papers
More filters
Journal ArticleDOI
25 Mar 1988-Cell

60 citations

Journal ArticleDOI
29 Sep 2010-PLOS ONE
TL;DR: It is shown that interferon alpha (IFNalpha) has the previously uncharacterized capacity to induce a quiescent HSV-1 and PRV infection in porcine TG neurons that shows strong similarity to in vivo latency.
Abstract: Background: Several alphaherpesviruses, including herpes simplex virus 1 (HSV-1) and pseudorabies virus (PRV), establish lifelong latency in neurons of the trigeminal ganglion (TG). Although it is thought that efficient establishment of alphaherpesvirus latency is based on a subtle interplay between virus, neurons and the immune system, it is not clear which immune components are of major importance for the establishment of latency. Methodology/Principal Findings: Here, using an in vitro model that enables a natural route of infection, we show that interferon alpha (IFNalpha) has the previously uncharacterized capacity to induce a quiescent HSV-1 and PRV infection in porcine TG neurons that shows strong similarity to in vivo latency. IFNalpha induced a stably suppressed HSV-1 and PRV infection in TG neurons in vitro. Subsequent treatment of neurons containing stably suppressed virus with forskolin resulted in reactivation of both viruses. HSV and PRV latency in vivo is often accompanied by the expression of latency associated transcripts (LATs). Infection of TG neurons with an HSV-1 mutant expressing LacZ under control of the LAT promoter showed activation of the LAT promoter and RT-PCR analysis confirmed that both HSV-1 and PRV express LATs during latency in vitro. Conclusions/Significance: These data represent a unique in vitro model of alphaherpesvirus latency and indicate that IFNalpha may be a driving force in promoting efficient latency establishment.

60 citations

Journal ArticleDOI
TL;DR: The molecular biology of HSV-1 latency is described and the current level of understanding of the molecular mechanism is presented, which is divided into several stages--establishment, maintenance of reactivation, and active areas of research.
Abstract: The neurotropic herpes viruses, as typified by herpes simplex virus type 1, are noted for their ability to form latent infections The latent infection differs from the acute infection both in gene expression and the physical state of the viral genome Latency can be divided into several stages--establishment, maintenance of reactivation--each of which are active areas of research This review describes the molecular biology of HSV-1 latency and presents the current level of understanding of the molecular mechanism of HSV-1 latency

60 citations

Book ChapterDOI
Chuangen Gao1, Hua Wang1, Fangjin Zhu1, Linbo Zhai1, Shanwen Yi1 
18 Nov 2015
TL;DR: A particle swarm optimization algorithm is proposed to solve the global latency controller placement problem with capacitated controllers, taking into consideration both the latency between controllers and the capacities of controllers.
Abstract: Software defined network (SDN) decouples the control plane from packet processing device and introduces the controller placement problem. The previous methods only focus on propagation latency between controllers and switches but ignore either the latency from controllers to controllers or the capacities of controllers, both of which are critical factors in real networks. In this paper, we define a global latency controller placement problem with capacitated controllers, taking into consideration both the latency between controllers and the capacities of controllers. And this paper proposes a particle swarm optimization algorithm to solve the problem for the first time. Simulation results show that the algorithm has better performance in propagation latency, computation time, and convergence.

60 citations

Journal ArticleDOI
TL;DR: This work proposes a two-level MAC scheduling framework that can effectively handle uplink and downlink transmissions of network slices of different characteristics over a shared RAN, applying different per-slice scheduling policies, and focusing on reducing latency for URLLC services.
Abstract: 5G comes with the promise of sub-millisecond latency, which is critical for realizing an array of emerging URLLC services, including industrial, entertainment, telemedicine, automotive, and tactile Internet applications. At the same time, slicing-ready 5G networks face the challenge of accommodating other heterogeneous coexisting services with different and potentially conflicting requirements. Providing latency and reliability guarantees to URLLC service slices is thus not trivial. We identify transmission scheduling at the RAN level as a significant contributor to end-toend latency when considering network slicing. In this direction, we propose a two-level MAC scheduling framework that can effectively handle uplink and downlink transmissions of network slices of different characteristics over a shared RAN, applying different per-slice scheduling policies, and focusing on reducing latency for URLLC services. Our scheme offers the necessary flexibility to dynamically manage radio resources to meet the stringent latency and reliability requirements of URLLC, as demonstrated by our simulation results.

59 citations


Network Information
Related Topics (5)
The Internet
213.2K papers, 3.8M citations
75% related
Node (networking)
158.3K papers, 1.7M citations
75% related
Wireless
133.4K papers, 1.9M citations
74% related
Server
79.5K papers, 1.4M citations
74% related
Network packet
159.7K papers, 2.2M citations
74% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20222
2021485
2020529
2019533
2018500
2017405