scispace - formally typeset
Search or ask a question
Topic

Latency (engineering)

About: Latency (engineering) is a research topic. Over the lifetime, 3729 publications have been published within this topic receiving 39210 citations. The topic is also known as: lag.


Papers
More filters
Proceedings ArticleDOI
21 Apr 2021
TL;DR: In this article, the authors present Dast (Decentralized Anticipate and Stretch), the first edge database that can meet the stringent performance requirements with serializability.
Abstract: A distributed database utilizing the wide-spread edge computing servers to provide low-latency data access with the serializability guarantee is highly desirable for emerging edge computing applications. In an edge database, nodes are divided into regions, and a transaction can be categorized as intra-region (IRT) or cross-region (CRT) based on whether it accesses data in different regions. In addition to serializability, we insist that a practical edge database should provide low tail latency for both IRTs and CRTs, and such low latency must be scalable to a large number of regions. Unfortunately, none of existing geo-replicated serializable databases or edge databases can meet such requirements. In this paper, we present Dast (Decentralized Anticipate and STretch), the first edge database that can meet the stringent performance requirements with serializability. Our key idea is to order transactions by anticipating when they are ready to execute: Dast binds an IRT to the latest timestamp and binds a CRT to a future timestamp to avoid the coordination of CRTs blocking IRTs. Dast also carries a new stretchable clock abstraction to tolerate inaccurate anticipations and to handle cross-region data reads. Our evaluation shows that, compared to three relevant serializable databases, Dast's 99-percentile latency was 87.9%~93.2% lower for IRTs and 27.7%~70.4% lower for CRTs; Dast's low latency is scalable to a large number of regions.

12 citations

Patent
06 May 2020
TL;DR: In this paper, a dynamic list of channels to be used for frequency hopping when communicating over an unlicensed radio frequency spectrum band is presented, thereby increasing communication reliability and promoting coexistence.
Abstract: Some techniques described herein assist a user equipment with acquiring and/or reacquiring, from a base station, a dynamic list of channels to be used for frequency hopping when communicating over an unlicensed radio frequency spectrum band, thereby increasing communication reliability and promoting coexistence in the unlicensed radio frequency spectrum band. Some techniques described herein also assist the user equipment in obtaining the list of channels with low latency (e.g., shortly after the list has changed) and with low power consumption. Numerous other aspects are provided.

12 citations

Patent
24 Feb 2014
TL;DR: In this paper, the devices and methods for a low latency data telecommunication system and method for video, audio control data and other data for use with one or more robots and remote controls are disclosed.
Abstract: Devices and methods for a low latency data telecommunication system and method for video, audio control data and other data for use with one or more robots and remote controls are disclosed The data transmission can be digital The data telecommunication system can enable the use of multiple robots and multiple remote controls in the same location with encrypted data transmission

12 citations

Proceedings ArticleDOI
02 Dec 2013
TL;DR: This work proposes a novel ECC scheme based on erasure coding that can extend ECC to correct and detect multiple erroneous bits at low latency, area, and power overheads and shows that EB-ECC, when combined with less than 5% row redundancy, can improve the cache access latency, power, and stability by over 40% on average.
Abstract: The embedded memory hierarchy of microprocessors and systems-on-a-chip plays a critical role in the overall system performance, area, power, resilience, and yield. However, as process technologies scale down to nanometer-regime geometries, the design and implementation of the embedded memory system are becoming increasingly difficult due to a number of exacerbating factors including increasing process variability, manufacturing defects, device wear out, and susceptibility to energetic particle strikes. Consequently, conventional memory resilience techniques will be unable to counter the raw bit error rate of the memory arrays in future technologies at economically feasible design points. Error correcting codes (ECC) are a widely-used and effective technique for correcting memory errors, but using conventional ECC techniques to correct more than one bit per word incurs high latency, area, and power overheads. In this work, we propose a novel ECC scheme based on erasure coding that can extend ECC to correct and detect multiple erroneous bits at low latency, area, and power overheads. Our results show that the increased memory resilience afforded by erasure-based ECC (EB-ECC) can be traded off to boost the memory performance, area, power, and yield. We show that EB-ECC, when combined with less than 5% row redundancy, can improve the cache access latency, power, and stability by over 40% on average, while maintaining near 100% yield and runtime reliability.

12 citations

Posted Content
TL;DR: In this paper, the authors aim to reduce the user experienced delay through prediction and communication co-design, where each mobile device predicts its future states and sends them to a data center in advance.
Abstract: Ultra-reliable and low-latency communications (URLLC) are considered as one of three new application scenarios in the fifth generation cellular networks. In this work, we aim to reduce the user experienced delay through prediction and communication co-design, where each mobile device predicts its future states and sends them to a data center in advance. Since predictions are not error-free, we consider prediction errors and packet losses in communications when evaluating the reliability of the system. Then, we formulate an optimization problem that maximizes the number of URLLC services supported by the system by optimizing time and frequency resources and the prediction horizon. Simulation results verify the effectiveness of the proposed method, and show that the tradeoff between user experienced delay and reliability can be improved significantly via prediction and communication co-design. Furthermore, we carried out an experiment on the remote control in a virtual factory, and validated our concept on prediction and communication co-design with the practical mobility data generated by a real tactile device.

12 citations


Network Information
Related Topics (5)
Network packet
159.7K papers, 2.2M citations
92% related
Server
79.5K papers, 1.4M citations
91% related
Wireless
133.4K papers, 1.9M citations
90% related
Wireless sensor network
142K papers, 2.4M citations
90% related
Wireless network
122.5K papers, 2.1M citations
90% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202210
2021692
2020481
2019389
2018366
2017227