scispace - formally typeset
Search or ask a question

Showing papers on "Latent heat published in 2012"


01 Dec 2012
Abstract: We upscaled FLUXNET observations of carbon dioxide, water, and energy fluxes to the global scale using the machine learning technique, model tree ensembles (MTE). We trained MTE to predict site-level gross primary productivity (GPP), terrestrial ecosystem respiration (TER), net ecosystem exchange (NEE), latent energy (LE), and sensible heat (H) based on remote sensing indices, climate and meteorological data, and information on land use. We applied the trained MTEs to generate global flux fields at a 0.5 degrees x 0.5 degrees spatial resolution and a monthly temporal resolution from 1982 to 2008. Cross-validation analyses revealed good performance of MTE in predicting among-site flux variability with modeling efficiencies (MEf) between 0.64 and 0.84, except for NEE (MEf = 0.32). Performance was also good for predicting seasonal patterns (MEf between 0.84 and 0.89, except for NEE (0.64)). By comparison, predictions of monthly anomalies were not as strong (MEf between 0.29 and 0.52). Improved accounting of disturbance and lagged environmental effects, along with improved characterization of errors in the training data set, would contribute most to further reducing uncertainties. Our global estimates of LE (158 +/- 7 J x 10(18) yr(-1)), H (164 +/- 15 J x 10(18) yr(-1)), and GPP (119 +/- 6 Pg C yr(-1)) were similar to independent estimates. Our global TER estimate (96 +/- 6 Pg C yr(-1)) was likely underestimated by 5-10%. Hot spot regions of interannual variability in carbon fluxes occurred in semiarid to semihumid regions and were controlled by moisture supply. Overall, GPP was more important to interannual variability in NEE than TER. Our empirically derived fluxes may be used for calibration and evaluation of land surface process models and for exploratory and diagnostic assessments of the biosphere.

948 citations


Journal ArticleDOI
TL;DR: In this paper, a synthesis of the latest observations suggests that more longwave radiation is received at the Earth's surface than previously thought, and that more precipitation is generated, and the additional precipitation is sustained by more energy leaving the surface by evaporation, that is, in the form of latent heat flux.
Abstract: Climate change is governed by changes to the global energy balance. A synthesis of the latest observations suggests that more longwave radiation is received at the Earth's surface than previously thought, and that more precipitation is generated. Climate change is governed by changes to the global energy balance. At the top of the atmosphere, this balance is monitored globally by satellite sensors that provide measurements of energy flowing to and from Earth. By contrast, observations at the surface are limited mostly to land areas. As a result, the global balance of energy fluxes within the atmosphere or at Earth's surface cannot be derived directly from measured fluxes, and is therefore uncertain. This lack of precise knowledge of surface energy fluxes profoundly affects our ability to understand how Earth's climate responds to increasing concentrations of greenhouse gases. In light of compilations of up-to-date surface and satellite data, the surface energy balance needs to be revised. Specifically, the longwave radiation received at the surface is estimated to be significantly larger, by between 10 and 17 Wm−2, than earlier model-based estimates. Moreover, the latest satellite observations of global precipitation indicate that more precipitation is generated than previously thought. This additional precipitation is sustained by more energy leaving the surface by evaporation — that is, in the form of latent heat flux — and thereby offsets much of the increase in longwave flux to the surface.

678 citations


Journal ArticleDOI
TL;DR: The energy imbalance problem in micrometeorology arises because at most flux measurement sites the sum of eddy fluxes of sensible and latent heat (H + ǫ) is less than the available energy (A) as mentioned in this paper.

401 citations


Journal ArticleDOI
01 Mar 2012-Energy
TL;DR: In this article, a comparison of various materials for high temperature thermal energy storage (HTTS) is presented, where the authors highlight the potential for an advanced study of thermo-mechanical properties of metal foams embedded with phase change material.

291 citations


Journal ArticleDOI
TL;DR: In this article, a simple semi-empirical model is presented to explore the hypothesis that the Madden-Julian oscillation can be represented as a moisture mode destabilized by surface flux and cloud-radiative feedbacks.
Abstract: The authors present a simple semi-empirical model to explore the hypothesis that the Madden–Julian oscillation can be represented as a moisture mode destabilized by surface flux and cloud–radiative feedbacks. The model is one-dimensional in longitude; the vertical and meridional structure is entirely implicit. The only prognostic variable is column water vapor W. The zonal wind field is an instantaneous diagnostic function of the precipitation field.The linearized version of the model has only westward-propagating (relative to the mean flow) unstable modes because wind-induced surface latent heat flux anomalies occur to the west of precipitation anomalies. The maximum growth rate occurs at the wavelength at which the correlation between precipitation and surface latent heat flux is maximized. This wavelength lies in the synoptic- to planetary-scale range and is proportional to the horizontal scale associated with the assumed diagnostic wind response to precipitation anomalies.The nonlinear version...

242 citations


Book ChapterDOI
01 Jan 2012
TL;DR: In this paper, the authors describe corrections that must be applied to measurements because practical instrumentation cannot fully meet the requirements of the underlying micrometeorological theory, and give the reader an overview of how these sources of error can be eliminated or reduced using some model assumptions and additional measurements.
Abstract: This chapter describes corrections that must be applied to measurements because practical instrumentation cannot fully meet the requirements of the underlying micrometeorological theory. Typically, measurements are made in a finite sampling volume rather than at a single point, and the maximum frequency response of the sensors is less than the highest frequencies of the turbulent eddies responsible for the heat and mass transport. Both of these cause a loss of the high-frequency component of the covariances used to calculate fluxes. Errors also arise in calculating fluxes of trace gas quantities using open-path analyzers because of spurious density fluctuations arising from the fluxes of heat and water vapor. This chapter gives the reader an overview of how these sources of error can be eliminated or reduced using some model assumptions and additional measurements. Corrections needed for some specific instruments are presented (Sect. 4.1), followed by a discussion of the generally observed lack of closure of the energy balance using the sum of latent and sensible heat fluxes (Sect. 4.2). The chapter closes with a discussion of measures needed to determine the quality of the final calculated fluxes (Sect. 4.3)

194 citations


Journal ArticleDOI
TL;DR: In this paper, a new sort of nanofluid phase change materials (PCMs) is developed by suspending a small amount of TiO2 nanoparticles in saturated BaCl2 aqueous solution.

190 citations


Journal ArticleDOI
TL;DR: In this article, phase change materials (PCMs) have been identified as having advantages over sensible heat storage media and an environmental audit function has been used to evaluate the environmental credentials of PCMs.

165 citations


Journal ArticleDOI
TL;DR: In this article, the LULCC impacts on surface albedo, latent heat and total turbulent energy flux are analyzed using a multivariate statistical analysis to mimic the models' responses, and the differences are explained by two major "features" varying from one model to another: the land-cover distribution and the simulated sensitivity to LUL CC.
Abstract: [1] Surface cooling in temperate regions is a common biogeophysical response to historical Land-Use induced Land Cover Change (LULCC). The climate models involved in LUCID show, however, significant differences in the magnitude and the seasonal partitioning of the temperature change. The LULCC-induced cooling is directed by decreases in absorbed solar radiation, but its amplitude is 30 to 50% smaller than the one that would be expected from the sole radiative changes. This results from direct impacts on the total turbulent energy flux (related to changes in land-cover properties other than albedo, such as evapotranspiration efficiency or surface roughness) that decreases at all seasons, and thereby induces a relative warming in all models. The magnitude of those processes varies significantly from model to model, resulting on different climate responses to LULCC. To address this uncertainty, we analyzed the LULCC impacts on surface albedo, latent heat and total turbulent energy flux, using a multivariate statistical analysis to mimic the models' responses. The differences are explained by two major ‘features’ varying from one model to another: the land-cover distribution and the simulated sensitivity to LULCC. The latter explains more than half of the inter-model spread and resides in how the land-surface functioning is parameterized, in particular regarding the evapotranspiration partitioning within the different land-cover types, as well as the role of leaf area index in the flux calculations. This uncertainty has to be narrowed through a more rigorous evaluation of our land-surface models.

156 citations


Journal ArticleDOI
TL;DR: In this paper, a novel class of nanofluid phase change material (NFPCM) was prepared by dispersing a small amount of multi-walled carbon nanotubes (MWCNT) in liquid paraffin, to enhance the heat transfer properties and examine the characteristics of the NFPCM during the solidification process.
Abstract: This study is aimed to prepare a novel class of nanofluid phase change material (NFPCM) by dispersing a small amount of multi-walled carbon nanotubes (MWCNT) in liquid paraffin, to enhance the heat transfer properties and examine the characteristics of the NFPCM during the solidification process. The stable NFPCMs are prepared by dispersing the MWCNT in liquid paraffin at 30°C with volume fractions of 0.15, 0.3, 0.45 and 0.6% without any dispersing agents. The rheology measurement illustrates the Newtonian fluid behavior in the shear stress range of 1–10 Pa. The differential scanning calorimetric results showed that there is no observable variation in the freezing/melting temperature of the NFPCM, and only a small observable change in the latent heat values. The thermal conductivity of various NFPCM is measured. The enhancement in thermal conductivity increases with the increased volume fraction of the MWCNT, and shows a weak dependence on the temperature. Further, for the NFPCM with a volume fraction of 0.6%, there is an appreciable increase in heat transfer with a reduction in the solidification time of 33.64%. The enhancement in the heat transfer performance would alleviate the major problems that have been encountered in the conventional phase change materials since several years.

148 citations


Journal ArticleDOI
TL;DR: In this paper, a comparative study of phase change materials (PCM) solidification in cylindrical shell and rectangular storages having the same volume and heat transfer surface area is presented.

Journal ArticleDOI
TL;DR: In this article, the authors proposed a mixed method, a composite of two existing approaches, for correcting eddy-covariance fluxes, which leads to an improved estimation of latent heat fluxes.

Journal ArticleDOI
TL;DR: In this paper, the authors found that the variability of temperature in climatic time scale tends to increase with altitude in about 65 % of the regional groups in 10 major mountain ranges of the world.
Abstract: In the present article, monthly mean temperature at 56 stations assembled in 18 regional groups in 10 major mountain ranges of the world were investigated. The periods of the analysis covered the last 50 to 110 years. The author found that the variability of temperature in climatic time scale tends to increase with altitude in about 65 % of the regional groups. A smaller number of groups, 20 %, showed the fastest change at an intermediate altitude between the peaks (or ridges) and their foot, while the remaining small number of sites, 15 %, showed the largest trends at the foot of mountains. This tendency provides a useful base for considering and planning the climate impact evaluations. The reason for the amplification of temperature variation at high altitudes is traced back to the increasing diabatic processes in the mid- and high troposphere as a result of the cloud condensation. This situation results from the fact that the radiation balance at the earth’s surface is transformed more efficiently into latent heat of evaporation rather than sensible heat, the ratio between them being 4 to 1. Variation in the surface evaporation is converted into heat upon condensation into cloud particles and ice crystals in the mid- and high troposphere. Therefore, this is the altitude where the result of the surface radiation change is effectively transferred. Further, the low temperature of the environment amplifies the effect of the energy balance variation on the surface temperature, as a result of the functional shape of Stefan–Boltzmann law. These processes altogether contribute to enhancing temperature variability at high altitudes. The altitude plays an important role in determining the temperature variability, besides other important factors such as topography, surface characteristics, cryosphere/temperature feedback and the frequency and intensity of an inversion. These processes have a profound effect not only on the ecosystem but also on glaciers and permafrost.

Journal ArticleDOI
TL;DR: A phase change composite (PCC) using a porous metal with a thermal conductivity that is two orders larger than that of the original phase change material (PCM) was developed in this paper.

Journal ArticleDOI
TL;DR: In this article, a thermal network model is developed to predict the performance of latent heat thermal energy storage (LHTES) systems including cascaded phase change materials (PCMs) and embedded heat pipes/thermosyphons.

Journal ArticleDOI
TL;DR: In this paper, the authors integrate the information about water stress into SEBS, one of the surface energy balance models that employ remote sensing (RS) data, through a modified definition of kB −1, the parameter that summarizes the excess aero- dynamic resistance to heat transfer compared to momentum transfer.

Journal ArticleDOI
TL;DR: In this article, the authors analyzed a large database of surface energy balance data in North America, Europe, Africa, and Asia (including 6-yr-long observation campaigns) and derived generalized surface-flux relations.
Abstract: A better understanding of links between the properties of the urban environment and the exchange to the atmosphere is central to a wide range of applications. The numerous measurements of surface energy balance data in urban areas enable intercomparison of observed fluxes from distinct environments. This study analyzes a large database in two new ways. First, instead of normalizing fluxes using net all-wave radiation only the incoming radiative fluxes are used, to remove the surface attributes from the denominator. Second, because data are now available year-round, indices are developed to characterize the fraction of the surface (built; vegetation) actively engaged in energy exchanges. These account for shading patterns within city streets and seasonal changes in vegetation phenology; their impact on the partitioning of the incoming radiation is analyzed. Data from 19 sites in North America, Europe, Africa, and Asia (including 6-yr-long observation campaigns) are used to derive generalized surface‐flux relations. The midday-period outgoing radiative fraction decreases with an increasing total active surface index, the stored energy fraction increases with an active built index, and the latent heat fraction increases with an active vegetated index. Parameterizations of these energy exchange ratios as a function of the surface indices [i.e., the Flux Ratio‐Active Index Surface Exchange (FRAISE) scheme] are developed. These are used to define four urban zones that characterize energy partitioning on the basis of their active surface indices. An independent evaluation of FRAISE, using three additional sites from the Basel Urban Boundary Layer Experiment (BUBBLE), yields accurate predictions of the midday flux partitioning at each location.

Journal ArticleDOI
TL;DR: The anthropogenic heat emissions generated by human activities in London are analyzed in detail for 2005-2008 and considered in context of long-term past and future trends (1970-2025).
Abstract: The anthropogenic heat emissions generated by human activities in London are analysed in detail for 2005–2008 and considered in context of long-term past and future trends (1970–2025). Emissions from buildings, road traffic and human metabolism are finely resolved in space (30 min) and time (200 × 200 m2). Software to compute and visualize the results is provided. The annual mean anthropogenic heat flux for Greater London is 10.9 W m−2 for 2005–2008, with the highest peaks in the central activities zone (CAZ) associated with extensive service industry activities. Towards the outskirts of the city, emissions from the domestic sector and road traffic dominate. Anthropogenic heat is mostly emitted as sensible heat, with a latent heat fraction of 7.3% and a heat-to-wastewater fraction of 12%; the implications related to the use of evaporative cooling towers are briefly addressed. Projections indicate a further increase of heat emissions within the CAZ in the next two decades related to further intensification of activities within this area.

Journal ArticleDOI
TL;DR: In this paper, the influence of micro-scale anthropogenic emissions on heat, moisture and carbon dioxide exchange in a highly urbanized environment for two sites in central London, UK.

Journal ArticleDOI
TL;DR: In this paper, the state of knowledge and outstanding issues with respect to the global mean energy budget of planet Earth are described, along with the ability to track changes over time, and the main issues relate to the downwelling longwave (LW) radiation and the hydrological cycle, and thus the surface evaporative cooling.
Abstract: The state of knowledge and outstanding issues with respect to the global mean energy budget of planet Earth are described, along with the ability to track changes over time. Best estimates of the main energy components involved in radiative transfer and energy flows through the climate system do not satisfy physical constraints for conser- vation of energy without adjustments. The main issues relate to the downwelling longwave (LW) radiation and the hydrological cycle, and thus the surface evaporative cooling. It is argued that the discrepancy is 18% of the surface latent energy flux, but only 4% of the downwelling LW flux and, for various reasons, it is most likely that the latter is astray in some calculations, including many models, although there is also scope for precipitation estimates to be revised. Beginning in 2000, the top-of-atmosphere radiation measurements provide stable estimates of the net global radiative imbalance changes over a decade, but after 2004 there is ''missing energy'' as the observing system of the changes in ocean heat content, melting of land ice, and so on is unable to account for where it has gone. Based upon a number of climate model experiments for the twenty-first century where there are stases in global surface temperature and upper ocean heat content in spite of an identifiable global energy imbalance, we infer that the main sink of the missing energy is likely the deep ocean below 275 m depth.

Journal ArticleDOI
TL;DR: In this paper, the 1-year (2009-2010) measurements were analyzed of the urban surface energy balance (SEB) obtained from the sensors located at three vertical layers of a 325m tower in downtown Beijing.
Abstract: The 1-year (2009–2010) measurements are analyzed of the urban surface energy balance (SEB) obtained from the sensors located at three vertical layers of a 325-m tower in downtown Beijing. Results show that: (1) The measurements from the 325-m tower represent the SEB characteristics of the cities located in semi-humid warm-temperate continental monsoon climate zone. In a typical hot and rainy summer, cold and dry winter, the measured Bowen ratio is minimum in summer and maximum in winter. The Bowen ratio measured at 140 m for spring, summer, autumn, and winter are 2.86, 0.82, 1.17, and 4.16 respectively. (2) At the height of 140-m (in the constant flux layer), the noontime albedo is ∼0.10 for summer, ∼0.12 for spring and autumn, and ∼0.14 for winter. The ratios of daytime sensible heat flux, latent heat flux, and storage heat flux to net radiation are 0.25, 0.16, and 0.59 for clear-sky days, and 0.33, 0.19, and 0.48 for cloudy days respectively. (3) Under clear-sky days, the nighttime sensible heat flux is almost zero, but the latent heat flux is greater than zero. For cloudy days, the nighttime sensible heat flux is slightly greater than the latent heat flux in winter. The nighttime upward heat flux is presumably due to the anthropogenic release (mainly latent heat for summer, while latent and sensible heat for winter).

Book ChapterDOI
01 Jan 2012
TL;DR: In this paper, the basic theory and procedures used to obtain turbulent fluxes of energy, mass, and momentum with the eddy covariance technique are described, including a description of data acquisition, pretreatment of high-frequency data and flux calculation.
Abstract: In this chapter, the basic theory and the procedures used to obtain turbulent fluxes of energy, mass, and momentum with the eddy covariance technique will be detailed. This includes a description of data acquisition, pretreatment of high-frequency data and flux calculation.

Journal ArticleDOI
TL;DR: In this article, data collected by two automatic weather stations (AWS) on the Larsen C ice shelf, Antarctica, between 22 Jan- uary 2009 and 1 February 2011 are analyzed and used as input for a model that computes the surface energy budget (SEB), which includes melt energy.
Abstract: Data collected by two automatic weather stations (AWS) on the Larsen C ice shelf, Antarctica, between 22 Jan- uary 2009 and 1 February 2011 are analyzed and used as input for a model that computes the surface energy budget (SEB), which includes melt energy. The two AWSs are sep- arated by about 70 km in the north-south direction, and both the near-surface meteorology and the SEB show similarities, although small differences in all components (most notably the melt flux) can be seen. The impact of subsurface absorp- tion of shortwave radiation on melt and snow temperature is significant, and discussed. In winter, longwave cooling of the surface is entirely compensated by a downward turbulent transport of sensible heat. In summer, the positive net radia- tive flux is compensated by melt, and quite frequently by up- ward turbulent diffusion of heat and moisture, leading to sub- limation and weak convection over the ice shelf. The month of November 2010 is highlighted, when strong westerly flow over the Antarctic Peninsula led to a dry and warm f¨ ohn wind over the ice shelf, resulting in warm and sunny conditions. Under these conditions the increase in shortwave and sensi- ble heat fluxes is larger than the decrease of net longwave and latent heat fluxes, providing energy for significant melt.

Journal ArticleDOI
TL;DR: In this article, wind-velocity measurement errors from a three-dimensional sonic anemometer with a non-orthogonal transducer orientation were estimated for over 100 combinations of angle-of-attack and wind direction using a novel technique to measure the true angle of attack and wind speed within the turbulent atmospheric surface layer.
Abstract: Sonic anemometers are capable of measuring the wind speed in all three dimen- sions at high frequencies (10-50 Hz), and are relied upon to estimate eddy-covariance-based fluxes of mass and energy over a wide variety of surfaces and ecosystems. In this study, wind-velocity measurement errors from a three-dimensional sonic anemometer with a non- orthogonal transducer orientation were estimated for over 100 combinations of angle-of- attack and wind direction using a novel technique to measure the true angle-of-attack and wind speed within the turbulent atmospheric surface layer. Corrections to the vertical wind speed varied from −5 to 37% for all angles-of-attack and wind directions examined. When applied to eddy-covariance data from three NOAA flux sites, the wind-velocity corrections increased the magnitude of CO2 fluxes, sensible heat fluxes, and latent heat fluxes by ≈11%, with the actual magnitude of flux corrections dependent upon sonic anemometer, surface type, and scalar. A sonic anemometer that uses vertically aligned transducers to measure the vertical wind speed was also tested at four angles-of-attack, and corrections to the ver- tical wind speed measured using this anemometer were within ±1% of zero. Sensible heat fluxes over a forest canopy measured using this anemometer were 15% greater than sensible heat fluxes measured using a sonic anemometer with a non-orthogonal transducer orienta- tion. These results indicate that sensors with a non-orthogonal transducer orientation, which includes the majority of the research-grade three-dimensional sonic anemometers currently in use, should be redesigned to minimize sine errors by measuring the vertical wind speed using one pair of vertically aligned transducers.

Journal ArticleDOI
TL;DR: In this paper, the surface heat budget of various pavement surfaces is studied with the aim of mitigating the urban heat island effect, and the latent heat flux is estimated from the observed weight of the cores.
Abstract: The surface heat budgets of various pavement surfaces are studied with the aim of mitigating the urban heat island effect. In this study, the thermal characteristics of pavements are examined using data from observations. The net radiation, surface temperature, temperature under the surface, conduction heat flux, and core weight for each experimental surface are recorded, together with the weather conditions at the time of observation. The latent heat flux is estimated from the observed weight of the cores. The surface heat budget under the same weather conditions is examined, and the sensible heat flux from each target surface is calculated. The parameters that influence the surface heat budget, for example, solar reflectance (albedo), evaporative efficiency, heat conductivity, and heat capacity, are examined. On a typical summer day, the maximum reduction in the sensible heat flux from that on a normal asphalt surface is about 150 W/m2 for an asphalt surface with water-retaining material and about 100 W/m2 for a cement concrete surface with water-retaining material, depending on the albedo of each surface.

Journal ArticleDOI
TL;DR: In this paper, long-term measurements of carbon dioxide flux and the latent and sensible heat fluxes were performed using the eddy covariance (EC) method in Beijing, China over a 4-yr period in 2006-2009.
Abstract: . Long-term measurements of carbon dioxide flux (Fc) and the latent and sensible heat fluxes were performed using the eddy covariance (EC) method in Beijing, China over a 4-yr period in 2006–2009. The EC setup was installed at a height of 47 m on the Beijing 325-m meteorological tower in the northwest part of the city. Latent heat flux dominated the energy exchange between the urban surface and the atmosphere in summer, while sensible heat flux was the main component in the spring. Winter and autumn were two transition periods of the turbulent fluxes. The source area of Fc was highly heterogeneous, which consisted of buildings, parks, and highways. It was of interest to study of the temporal and spatial variability of Fc in this urban environment of a developing country. Both on diurnal and monthly scale, the urban surface acted as a net source for CO2 and downward fluxes were only occasionally observed. The diurnal pattern of Fc showed dependence on traffic and the typical two peak traffic patterns appeared in the diurnal cycle. Also Fc was higher on weekdays than on weekends due to the higher traffic volumes on weekdays. On seasonal scale, Fc was generally higher in winter than during other seasons likely due to domestic heating during colder months. Total annual average CO2 emissions from the neighborhood of the tower were estimated to be 4.90 kg C m−2 yr−1 over the 4-yr period. Total vehicle population was the most important factor controlling the inter-annual variability of Fc in this urban area.

Journal ArticleDOI
TL;DR: In this paper, the authors investigated the dissimilarity between the turbulent transport of sensible heat and water vapour, with a specific focus on the difference between the Monin-Obukhov similarity functions for the structure parameters.
Abstract: Monin–Obukhov similarity functions for the structure parameters of temperature and humidity are needed to derive surface heat and water vapour fluxes from scintillometer measurements and it is often assumed that the two functions are identical in the atmospheric surface layer. Nevertheless, this assumption has not yet been verified experimentally. This study investigates the dissimilarity between the turbulent transport of sensible heat and water vapour, with a specific focus on the difference between the Monin–Obukhov similarity functions for the structure parameters. Using two datasets collected over homogeneous surfaces where the surface sources of sensible heat and water vapour are well correlated, we observe that under stable and very unstable conditions, the two functions are similar. This similarity however breaks down under weakly unstable conditions; in that regime, the absolute values of the correlations between temperature and humidity are also observed to be low, most likely due to large-scale eddies that transport unsteadiness, advection or entrainment effects from the outer layer. We analyze and demonstrate how this reduction in the correlation leads to dissimilarity between the turbulent transport of these two scalars and the corresponding Monin–Obukhov similarity functions for their structure parameters. A model to derive sensible and latent heat fluxes from structure parameters without measuring the friction velocity is tested and found to work very well under moderately to strongly unstable conditions (−z/L > 0.5). Finally, we discuss the modelling of the cross-structure parameter over wet surfaces, which is crucial for correcting water vapour effects on optical scintillometer measurements and also for obtaining surface sensible and latent heat fluxes from the two-wavelength scintillometry.

Journal ArticleDOI
TL;DR: In this article, two combined interpolation/extrapolation methods based on the self preservation of evaporative fraction and the stress factor are compared to reconstruct seasonal evapotranspiration from instantaneous measurements acquired in clear sky conditions.
Abstract: Evapotranspiration estimates can be derived from remote sensing data and ancillary, mostly meterorological, information. For this purpose, two types of methods are classically used: the first type estimates a potential evapotranspiration rate from vegetation indices, and adjusts this rate according to water availability derived from either a surface temperature index or a first guess obtained from a rough estimate of the water budget, while the second family of methods relies on the link between the surface temperature and the latent heat flux through the surface energy budget. The latter provides an instantaneous estimate at the time of satellite overpass. In order to compute daily evapotranspiration, one needs an extrapolation algorithm. Since no image is acquired during cloudy conditions, these methods can only be applied during clear sky days. In order to derive seasonal evapotranspiration, one needs an interpolation method. Two combined interpolation/extrapolation methods based on the self preservation of evaporative fraction and the stress factor are compared to reconstruct seasonal evapotranspiration from instantaneous measurements acquired in clear sky conditions. Those measurements are taken from instantaneous latent heat flux from 11 datasets in Southern France and Morocco. Results show that both methods have comparable performances with a clear advantage for the evaporative fraction for datasets with several water stress events. Both interpolation algorithms tend to underestimate evapotranspiration due to the energy limiting conditions that prevail during cloudy days. Taking into account the diurnal variations of the evaporative fraction according to an empirical relationship derived from a previous study improved the performance of the extrapolation algorithm and therefore the retrieval of the seasonal evapotranspiration for all but one datasets.

Journal ArticleDOI
TL;DR: In this article, a 1-km resolution Weather Research and Forecasting (WRF) model coupled with a single-layer Urban Canopy Model is used to simulate the urban climate in Nanjing of eastern China.
Abstract: In this study, urban climate in Nanjing of eastern China is simulated using 1-km resolution Weather Research and Forecasting (WRF) model coupled with a single-layer Urban Canopy Model. Based on the 10-summer simulation results from 2000 to 2009 we find that the WRF model is capable of capturing the high-resolution features of urban climate over Nanjing area. Although WRF underestimates the total precipitation amount, the model performs well in simulating the surface air temperature, relative humidity, and precipitation frequency and inter-annual variability. We find that extremely hot events occur most frequently in urban area, with daily maximum (minimum) temperature exceeding 36°C (28°C) in around 40% (32%) of days. Urban Heat Island (UHI) effect at surface is more evident during nighttime than daytime, with 20% of cases the UHI intensity above 2.5°C at night. However, The UHI affects the vertical structure of Planet Boundary Layer (PBL) more deeply during daytime than nighttime. Net gain for latent heat and net radiation is larger over urban than rural surface during daytime. Correspondingly, net loss of sensible heat and ground heat are larger over urban surface resulting from warmer urban skin. Because of different diurnal characteristics of urban-rural differences in the latent heat, ground heat and other energy fluxes, the near surface UHI intensity exhibits a very complex diurnal feature. UHI effect is stronger in days with less cloud or lower wind speed. Model results reveal a larger precipitation frequency over urban area, mainly contributed by the light rain events (< 10 mm d−1). Consistent with satellite dataset, around 10–20% more precipitation occurs in urban than rural area at afternoon induced by more unstable urban PBL, which induces a strong vertical atmospheric mixing and upward moisture transport. A significant enhancement of precipitation is found in the downwind region of urban in our simulations in the afternoon.

Journal ArticleDOI
01 Sep 2012-Energy
TL;DR: In this article, the authors describe the application of computational fluid-dynamics (CFD) to the design and characterization of a medium scale energy storage unit for district heating systems.