scispace - formally typeset
Search or ask a question
Topic

Latent heat

About: Latent heat is a research topic. Over the lifetime, 13503 publications have been published within this topic receiving 302811 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors investigated the effect of microporous coating on the nucleate pool boiling and found that the coating significantly increased the critical heat flux for a plain surface due to decreased latent heat transfer and increased hydrodynamic stability from increased vapor incrtia.
Abstract: The present study is an experimental investigation of the nucleate pool boiling heat transfer enhancement mechanism of microporous surfaces immersed in saturated FC-72. Measurements of bubble size, frequency, and vapor flow rate from a plain and microporous coated 390 μm diameter platinum wire using the consecutive-photo method were taken to determine the effects of the coating on the convective and latent heat transfer mechanisms. Results of the study showed that the microporous coating augments nucleate boiling performance through increased latent heat transfer in the low heat flux region and through increased convection heat transfer in the high heat flux region. The critical heat flux for the microporous coated surface is significantly enhanced over the plain surface due to decreased latent heat transfer (decreased vapor generation rate) and/or increased hydrodynamic stability from increased vapor incrtia; both of which are a direct result of increased nucleation site density.

102 citations

Journal ArticleDOI
TL;DR: In this article, the performance of a combined large aperture scintillometer (LAS) and a millimetre wave scintilometer (MWS) for estimating surface fluxes of sensible and latent heat over natural landscape is investigated, using data gathered during LITFASS-2003.
Abstract: The performance of a combined large aperture scintillometer (LAS) and a millimetre wave scintillometer (MWS) for estimating surface fluxes of sensible and latent heat over natural landscape is investigated, using data gathered during LITFASS-2003. For this purpose the LAS–MWS system was installed in a moderate heterogeneous landscape over a path length of 4.7 km with an effective beam height of 43 m. The derived surface fluxes have been compared with aggregated eddy-covariance (EC) measurements. The fluxes of sensible and latent heat from the LAS–MWS combination, as well as sensible heat fluxes of the single LAS, agreed fairly well with the EC-based fluxes, considering the uncertainties of the similarity stability functions and observed energy imbalance.

102 citations

Journal ArticleDOI
TL;DR: In this paper, a magnetically moving mesh-structured solar absorbers within a molten salt along the solar illumination path significantly accelerates solar-thermal energy storage rates while maintaining 100% storage capacity.
Abstract: Solar-thermal energy storage within phase change materials (PCMs) can overcome solar radiation intermittency to enable continuous operation of many important heating-related processes. The energy harvesting performance of current storage systems, however, is limited by the low thermal conductivity of PCMs, and the thermal conductivity enhancement of high-temperature molten salt-based PCMs is challenging and often leads to reduced energy storage capacity. Here, we demonstrate that magnetically moving mesh-structured solar absorbers within a molten salt along the solar illumination path significantly accelerates solar-thermal energy storage rates while maintaining 100% storage capacity. Such a magnetically-accelerated movable charging strategy increases the latent heat solar-thermal energy harvesting rate by 107%, and also supports large-area charging and batch-to-batch solar-thermal storage. The movable charging system can be readily integrated with heat exchanging systems to serve as energy sources for water and space heating by using abundant clean solar-thermal energy.

102 citations

Journal ArticleDOI
TL;DR: In this article, the relative importance between the sensible heat supply from the ocean and latent heating is assessed for the maintenance of near-surface mean baroclinicity in the major storm-track regions.
Abstract: The relative importance between the sensible heat supply from the ocean and latent heating is assessed for the maintenance of near-surface mean baroclinicity in the major storm-track regions, by analyzing steady linear responses of a planetary wave model to individual components of zonally asymmetric thermal forcing taken from a global reanalysis dataset. The model experiments carried out separately for the North Atlantic, North Pacific, and south Indian Oceans indicate that distinct local maxima of near-surface baroclinicity observed along the storm tracks can be reinforced most efficiently as a response to the near-surface sensible heating. The result suggests the particular importance of the differential sensible heat supply from the ocean across an oceanic frontal zone for the efficient restoration of surface baroclinicity, which acts against the relaxing effect by poleward eddy heat transport, setting up conditions favorable for the recurrent development of transient eddies to anchor a storm ...

102 citations

Journal ArticleDOI
TL;DR: In this article, the role of vegetation, soil moisture, and terrain in determining the horizontal variability of latent heat LE and sensible heat H along a 46-km flight track in southeast Kansas is analyzed.
Abstract: Analyses of daytime fair-weather aircraft and surface-flux tower data from the May–June 2002 International H2O Project (IHOP_2002) and the April–May 1997 Cooperative Atmosphere Surface Exchange Study (CASES-97) are used to document the role of vegetation, soil moisture, and terrain in determining the horizontal variability of latent heat LE and sensible heat H along a 46-km flight track in southeast Kansas Combining the two field experiments clearly reveals the strong influence of vegetation cover, with H maxima over sparse/dormant vegetation, and H minima over green vegetation; and, to a lesser extent, LE maxima over green vegetation, and LE minima over sparse/dormant vegetation If the small number of cases is producing the correct trend, other effects of vegetation and the impact of soil moisture emerge through examining the slope ΔxyLE/ΔxyH for the best-fit straight line for plots of time-averaged LE as a function of time-averaged H over the area Based on the surface energy balance, H + LE

102 citations


Network Information
Related Topics (5)
Boundary layer
64.9K papers, 1.4M citations
82% related
Climate model
22.2K papers, 1.1M citations
81% related
Heat transfer
181.7K papers, 2.9M citations
79% related
Turbulence
112.1K papers, 2.7M citations
78% related
Thermal conductivity
72.4K papers, 1.4M citations
77% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023581
20221,033
2021640
2020583
2019615
2018578