scispace - formally typeset
Search or ask a question
Topic

Latent heat

About: Latent heat is a research topic. Over the lifetime, 13503 publications have been published within this topic receiving 302811 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, a LiNO3/KCl-expanded graphite (EG) composite phase change material (PCM) was prepared for solar thermal energy storage application at high temperature (∼200 °C).

146 citations

Journal ArticleDOI
TL;DR: In this paper, a state-of-the-art mesoscale numerical model was used to investigate the relationship between mesoscales heat fluxes and atmospheric and land-surface characteristics that play a key role in the generation of mesoschere circulations.
Abstract: Vertical heat fluxes associated with mesoscale circulations generated by land-surface wetness discontinuities are often stronger than turbulent fluxes, especially in the upper part of the atmospheric planetary boundary layer. As a result, they contribute significantly to the subgrid-scale fluxes in large-scale atmospheric models. Yet they are not considered in these models. To provide some insights into the possible parameterization of these fluxes in large-scale models, a state-of-the-art mesoscale numerical model was used to investigate the relationships between mesoscale heat fluxes and atmospheric and land-surface characteristics that play a key role in the generation of mesoscale circulations. The distribution of land-surface wetness, the wavenumber and the wavelength of the land-surface discontinuities, and the large-scale wind speed have a significant impact on the mesoscale heat fluxes. Empirical functions were derived to characterize the relationships between mesoscale heat fluxes and the spatial distribution of land-surface wetness. The strongest mesoscale heat fluxes were obtained for a wavelength of forcing corresponding approximately to the local Rossby deformation radius. The mesoscale heat fluxes are weakened by large-scale background winds but remain significant even with moderate winds.

146 citations

Journal ArticleDOI
TL;DR: In this paper, an in-depth analysis of various operating conditions and design parameters that need to be considered in the design of a phase change materials (PCM) based heat exchanger is presented.
Abstract: Thermal energy storage using phase change materials (PCM) proved to be a promising technology because of its relative advantages over the other types of energy storage methods. Along with thermophysical properties of PCM, the performance of latent heat based thermal energy storage system depends on the design of the heat exchanger. Although extensive research is being carried out over the past few years, an integrated study on the design of PCM heat exchanger is scarce. This review presents the in-depth analysis of various operating conditions and design parameters that need to be considered in the design of a PCM based heat exchanger. Shell and tube type, triple concentric tube type heat exchangers are discussed along with the various heat transfer techniques employed in both the types of heat exchangers. In each enhancement technique, the influencing geometric parameters are summarized, and the recommended values of those parameters are provided. The present article is expected to be a helpful reference for the researchers working in the field of thermal energy storage.

146 citations

Journal ArticleDOI
TL;DR: In this article, the authors present a numerical model for phase change material (PCM) solidification in thermal storage coaxial tubes with internal and external horizontal fins for conditioning systems with two air passages.

146 citations

Journal ArticleDOI
TL;DR: In this article, a model of land surface energy balance is used as a constraint on the estimation of factors characterizing land surface influences on evaporation and turbulent heat transfer from sequences of radiometric surface temperature measurements.
Abstract: A model of land surface energy balance is used as a constraint on the estimation of factors characterizing land surface influences on evaporation and turbulent heat transfer from sequences of radiometric surface temperature measurements. The surface moisture control on evaporation is captured by the dimensionless evaporative fraction (ratio of latent heat flux to the sum of the turbulent fluxes), which is nearly constant for near-peak radiation hours on days without precipitation. The dimensionless parameter capturing the turbulent transfer characteristics (bulk heat transfer coefficient) includes the impacts of both forced and free convection. The mean diurnal pattern and seasonal trends are interpreted in the context of expected surface air layer static stability variations. The approach is tested over the First International Satellite Land Surface Climatology Project (ISLSCP) Field Experiment (FIFE) site (Kansas) where verification data on surface fluxes are available. It is shown that sequent...

146 citations


Network Information
Related Topics (5)
Boundary layer
64.9K papers, 1.4M citations
82% related
Climate model
22.2K papers, 1.1M citations
81% related
Heat transfer
181.7K papers, 2.9M citations
79% related
Turbulence
112.1K papers, 2.7M citations
78% related
Thermal conductivity
72.4K papers, 1.4M citations
77% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023581
20221,033
2021640
2020583
2019615
2018578