scispace - formally typeset

Topic

Lattice constant

About: Lattice constant is a(n) research topic. Over the lifetime, 31240 publication(s) have been published within this topic receiving 649383 citation(s). The topic is also known as: lattice parameter.


Papers
More filters
Journal ArticleDOI
Abstract: We develop the embedded-atom method [Phys. Rev. Lett. 50, 1285 (1983)], based on density-functional theory, as a new means of calculating ground-state properties of realistic metal systems. We derive an expression for the total energy of a metal using the embedding energy from which we obtain several ground-state properties, such as the lattice constant, elastic constants, sublimation energy, and vacancy-formation energy. We obtain the embedding energy and accompanying pair potentials semiempirically for Ni and Pd, and use these to treat several problems: surface energy and relaxation of the (100), (110), and (111) faces; properties of H in bulk metal (H migration, binding of H to vacancies, and lattice expansion in the hydride phase); binding site and adsorption energy of hydrogen on (100), (110), and (111) surfaces; and lastly, fracture of Ni and the effects of hydrogen on the fracture. We emphasize problems with hydrogen and with surfaces because none of these can be treated with pair potentials. The agreement with experiment, the applicability to practical problems, and the simplicity of the technique make it an effective tool for atomistic studies of defects in metals.

5,395 citations

Journal ArticleDOI
Abstract: A consistent set of embedding functions and pair interactions for use with the embedded-atom method [M.S. Daw and M. I. Baskes, Phys. Rev. B 29, 6443 (1984)] have been determined empirically to describe the fcc metals Cu, Ag, Au, Ni, Pd, and Pt as well as alloys containing these metals. The functions are determined empirically by fitting to the sublimation energy, equilibrium lattice constant, elastic constants, and vacancy-formation energies of the pure metals and the heats of solution of the binary alloys. The validity of the functions is tested by computing a wide range of properties: the formation volume and migration energy of vacancies, the formation energy, formation volume, and migration energy of divacancies and self-interstitials, the surface energy and geometries of the low-index surfaces of the pure metals, and the segregation energy of substitutional impurities to (100) surfaces.

3,419 citations

Journal ArticleDOI
Abstract: The Al x Ga1−x As/GaAs heterostructure system is potentially useful material for high‐speed digital, high‐frequency microwave, and electro‐optic device applications Even though the basic Al x Ga1−x As/GaAs heterostructure concepts are understood at this time, some practical device parameters in this system have been hampered by a lack of definite knowledge of many material parameters Recently, Blakemore has presented numerical and graphical information about many of the physical and electronic properties of GaAs [J S Blakemore, J Appl Phys 5 3, R123 (1982)] The purpose of this review is (i) to obtain and clarify all the various material parameters of Al x Ga1−x As alloy from a systematic point of view, and (ii) to present key properties of the material parameters for a variety of research works and device applications A complete set of material parameters are considered in this review for GaAs, AlAs, and Al x Ga1−x As alloys The model used is based on an interpolation scheme and, therefore, necessitates known values of the parameters for the related binaries (GaAs and AlAs) The material parameters and properties considered in the present review can be classified into sixteen groups: (1) lattice constant and crystal density, (2) melting point, (3) thermal expansion coefficient, (4) lattice dynamic properties, (5) lattice thermal properties, (6) electronic‐band structure, (7) external perturbation effects on the band‐gap energy, (8) effective mass, (9) deformation potential, (10) static and high‐frequency dielectric constants, (11) magnetic susceptibility, (12) piezoelectric constant, (13) Frohlich coupling parameter, (14) electron transport properties, (15) optical properties, and (16) photoelastic properties Of particular interest is the deviation of material parameters from linearity with respect to the AlAs mole fraction x Some material parameters, such as lattice constant, crystal density, thermal expansion coefficient, dielectric constant, and elastic constant, obey Vegard’s rule well Other parameters, eg, electronic‐band energy, lattice vibration (phonon) energy, Debye temperature, and impurity ionization energy, exhibit quadratic dependence upon the AlAs mole fraction However, some kinds of the material parameters, eg, lattice thermal conductivity, exhibit very strong nonlinearity with respect to x, which arises from the effects of alloy disorder It is found that the present model provides generally acceptable parameters in good agreement with the existing experimental data A detailed discussion is also given of the acceptability of such interpolated parameters from an aspect of solid‐state physics Key properties of the material parameters for use in research work and a variety of Al x Ga1−x As/GaAs device applications are also discussed in detail

2,548 citations

Journal ArticleDOI
Abstract: A new compound composed of Nd, Fe, and a small quantity of B (about 1 wt. %) has been found, which has a tetragonal structure with lattice constants a=0.880 nm and c=1.221 nm. This phase, which has the approximate composition, 12 at. % Nd, 6 at. % B and balance Fe, possesses remarkable magnetic properties. From the approach to saturation an anisotroy constant of about 3.5 MJ/m3 can be calculated, while saturation magnetization amounts to 1.35 T. The magnetization versus temperature curve shows a Curie temperature of 585 K, which is much higher than those of the Fe and light rare earth binary compounds. Based on the new compound, sintered permanent magnets have been developed which have a record high energy product. Permanent magnet properties and physical properties of a typical specimen which has the composition Nd15B8Fe77 are as follows: Br =1.23 T, HcB =880 kA/m, HcI =960 kA/m, (BH)max =290 kJ/m3, temperature coefficient of Br =−1260 ppm/K, density=7.4 Mg/m3, specific resistivity=1.4 μΩm, Vickers hardn...

2,353 citations

Journal ArticleDOI
17 Jun 2010-Nature
TL;DR: Real-space imaging of a two-dimensional skyrmion lattice in a thin film of Fe0.5Co 0.5Si using Lorentz transmission electron microscopy reveals a controlled nanometre-scale spin topology, which may be useful in observing unconventional magneto-transport effects.
Abstract: Crystal order is not restricted to the periodic atomic array, but can also be found in electronic systems such as the Wigner crystal or in the form of orbital order, stripe order and magnetic order. In the case of magnetic order, spins align parallel to each other in ferromagnets and antiparallel in antiferromagnets. In other, less conventional, cases, spins can sometimes form highly nontrivial structures called spin textures. Among them is the unusual, topologically stable skyrmion spin texture, in which the spins point in all the directions wrapping a sphere. The skyrmion configuration in a magnetic solid is anticipated to produce unconventional spin-electronic phenomena such as the topological Hall effect. The crystallization of skyrmions as driven by thermal fluctuations has recently been confirmed in a narrow region of the temperature/magnetic field (T-B) phase diagram in neutron scattering studies of the three-dimensional helical magnets MnSi (ref. 17) and Fe(1-x)Co(x)Si (ref. 22). Here we report real-space imaging of a two-dimensional skyrmion lattice in a thin film of Fe(0.5)Co(0.5)Si using Lorentz transmission electron microscopy. With a magnetic field of 50-70 mT applied normal to the film, we observe skyrmions in the form of a hexagonal arrangement of swirling spin textures, with a lattice spacing of 90 nm. The related T-B phase diagram is found to be in good agreement with Monte Carlo simulations. In this two-dimensional case, the skyrmion crystal seems very stable and appears over a wide range of the phase diagram, including near zero temperature. Such a controlled nanometre-scale spin topology in a thin film may be useful in observing unconventional magneto-transport effects.

2,103 citations


Network Information
Related Topics (5)
Amorphous solid

117K papers, 2.2M citations

94% related
Thin film

275.5K papers, 4.5M citations

94% related
Band gap

86.8K papers, 2.2M citations

93% related
Silicon

196K papers, 3M citations

90% related
Oxide

213.4K papers, 3.6M citations

90% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202237
2021886
2020911
2019900
2018966
20171,003