Abstract: By covering a metal ground plane with a periodic surface texture, we can alter its electromagnetic properties. The impedance of this metasurface can be modeled as a parallel resonant circuit, with sheet inductance L, and sheet capacitance C. The reflection phase varies with frequency from +/spl pi/ to -/spl pi/, and crosses through 0 at the LC resonance frequency, where the surface behaves as an artificial magnetic conductor. By incorporating varactor diodes into the texture, we have built a tunable impedance surface, in which an applied bias voltage controls the resonance frequency, and the reflection phase. We can program the surface to create a tunable phase gradient, which can electronically steer a reflected beam over +/- 40/spl deg/ in two dimensions, for both polarizations. We have also found that this type of resonant surface texture can provide greater bandwidth than conventional reflectarray structures. This new electronically steerable reflector offers a low-cost alternative to a conventional phased array.