scispace - formally typeset
Search or ask a question
Topic

Lead acetate

About: Lead acetate is a research topic. Over the lifetime, 2636 publications have been published within this topic receiving 69739 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: It can be hypothesized that flaxseed oil is a natural product can be protect against lead acetate-mediated hepatic cytotoxicity, because of its marked improvement in most of the studied parameters as well as histopathological features.
Abstract: Lead is a persistent environmental pollutant, and its toxicity continues to be a major health problem due to its interference with natural environment. In the present study, we have evaluated the effect of flaxseed oil on lead acetate-mediated hepatic oxidative stress and toxicity in rats. Lead acetate enhanced lipid peroxidation and nitric oxide production in both serum and liver with concomitant reduction in glutathione, catalase, superoxide dismutase, glutathione reductase, glutathione-S-transferase, and glutathione peroxidase activities, these findings were associated with DNA fragmentation. In addition, lead acetate caused liver injury as indicated by histopathological changed of the liver with an elevation in total bilirubin, serum alanine aminotransferase, aspartate aminotransferase, γ-glutamyl transpeptidase, and alkaline phosphatase. Treatment of rats with flaxseed oil resulted in marked improvement in most of the studied parameters as well as histopathological features. On the basis of the above results it can hypothesized that flaxseed oil is a natural product can be protect against lead acetate-mediated hepatic cytotoxicity.

82 citations

Journal ArticleDOI
TL;DR: In vivo experiments with the stable lead isotope, 204Pb, have confirmed that inorganic lead compounds can be absorbed through the skin, and it is possible that percutaneous absorption of lead could contribute significantly to lead body burden.

82 citations

Journal ArticleDOI
TL;DR: GFR improved after DMSA treatment in both low-dose and high-dose lead-treated rats, irrespective of the degree of pathological alterations, and it may be concluded that the DMSA effect is most likely mediated by hemodynamic changes.

81 citations

Journal ArticleDOI
TL;DR: The results show that lead acetate inhalation induces systemic DNA damage but that some organs are special targets of this metal, such as lung and liver, depending in part on length of exposure, suggesting alternative organ processes to handle lead intoxication.
Abstract: Lead is perhaps the longest used and best recognized toxic environmental chemical and it is still being used recklessly. Lead (Pb) has been found to be capable of eliciting a positive response in an extraordinarily wide range of biological and biochemical tests; among them tests for enzyme inhibition, fidelity of DNA synthesis, mutation, chromosomal aberrations, cancer and birth defects. Since inhalation is one of the most important routes of environmental Pb exposure, in the present study a lead inhalation model in mice was implemented in order to detect the induction of genotoxic damage as single-strand breaks and alkali-labile sites in several mouse organs (nasal epithelial cells, lung, whole blood, liver, kidney, bone marrow, brain and testes), assessed by single cell gel electrophoresis (SCGE) or Comet assay. We found differences among the organs studied after a single and subsequent inhalations: in the organs analyzed we observed a positive induction of DNA damage after a single inhalation only in the liver and the lung. In subsequent inhalations the response was positive in all organs except the testicle, however, DNA damage induction over time was different for each organ. A correlation between length of exposure, DNA damage and metal tissue concentration was observed for lung, liver and kidney. Differences in DNA damage occurred in organs when lead acetate was administered acutely or sub-chronically. These results show that lead acetate inhalation induces systemic DNA damage but that some organs are special targets of this metal, such as lung and liver, depending in part on length of exposure, suggesting alternative organ processes to handle lead intoxication.

80 citations

Journal ArticleDOI
TL;DR: It is concluded that lead toxicity is mediated through oxidative stress in salivary glands, while increasing intracellular cAMP and cGMP levels may prevent lead-induced oxidative stress.
Abstract: The role of oxidative stress in lead toxicity has been proposed in many organs, however, no study has been performed in the salivary glands, which are important parts of the gastrointestinal tract with a high implication in health of the whole body. Recently, it has been proposed that increasing the levels of cGMP and cAMP in the cells may protect from the neurotoxicity of lead. The objective of this study was to determine the ability of lead acetate to produce oxidative stress in rat submandibular as the main salivary gland of the body and to study the role of pretreatment by specific phosphodiesterase inhibitors in the prevention of oxidative stress. Lead acetate (100 mg/kg), alone or in combination with theophylline (25 mg/kg) and sildenafil (5 mg/kg), was administered intraperitoneally to rats. After 2 hours and under general anaesthesia, the submandibular gland ducts were cannulated intraorally using microcannula, and pure saliva was collected for 30 min using pilocarpine (8 mg/kg) as a secretagogue. The submandibular glands were then isolated free under surgery. Oxidative stress in the gland and pure saliva were evaluated measuring lipid peroxidation (thiobarbituric acid reactive substances assay), total thiol groups content and total antioxidant capacity (the ferric reducing ability assay). Results showed significant oxidative stress in the gland and secretions as indicated by increased lipid peroxidation, decreased total antioxidant capacity and thiol group levels. The use of cAMP and cGMP phosodiesterase inhibitors, theophylline and sildenafil, prevented lead-induced increased lipid peroxidation and also protected from decreased thiol groups content and total antioxidant power of the gland and secretions. The same trend of effects was observed in gland and saliva. It is concluded that lead toxicity is mediated through oxidative stress in salivary glands, while increasing intracellular cAMP and cGMP levels may prevent lead-induced oxidative stress.

80 citations


Network Information
Related Topics (5)
Oxidative stress
86.5K papers, 3.8M citations
77% related
DNA damage
47K papers, 2.4M citations
73% related
Cell culture
133.3K papers, 5.3M citations
72% related
Apoptosis
115.4K papers, 4.8M citations
72% related
Mitochondrion
51.5K papers, 3M citations
72% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202352
2022110
202182
202087
201983
201887