scispace - formally typeset
Search or ask a question
Topic

Lead zirconate titanate

About: Lead zirconate titanate is a research topic. Over the lifetime, 7141 publications have been published within this topic receiving 150878 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the Curie constant was found to form a peak in the middle of the phase diagram at the PZT 50/50 composition, which was then fitted to these data to determine the compositional dependence of coefficients.
Abstract: Vaiues of the Curie constant (C) and sixth-order polarization interaction dielectric stiffness coefficients (α112 and α123) are needed for the development of a thermodynamic theory for the entire lead zirconate-titanate (PZT) solid solution system. Low-temperature dielectric data measured on pure homogeneous polycrystalline PZT samples were used to determine values of these coefficients at several compositions across the phase diagram. Equations were then fitted to these data to determine the compositional dependence of the coefficients. The Curie constant was found to form a peak in the middle of the phase diagram at the PZT 50/50 composition.

247 citations

Journal ArticleDOI
14 May 1999-Science
TL;DR: The polarization field of the ferroelectric oxide lead zirconate titanate was used to tune the critical temperature of the hightemperature superconducting cuprate gadolinium barium copper oxide in a reversible, nonvolatile fashion.
Abstract: The polarization field of the ferroelectric oxide lead zirconate titanate [Pb(ZrxTi1–x)O3] was used to tune the critical temperature of the hightemperature superconducting cuprate gadolinium barium copper oxide (GdBa2Cu3O7–x) in a reversible, nonvolatile fashion. For slightly underdoped samples, a uniform shift of several Kelvin in the critical temperature was observed, whereas for more underdoped samples, an insulating state was induced. This transition from superconducting to insulating behavior does not involve chemical or crystalline modification of the material.

246 citations

Journal ArticleDOI
TL;DR: In this article, the flexoelectric coefficient of lead zirconate titanate (PZT) ceramics was measured to be 1.4μC∕m in the PZT ceramic at small level of strain gradient.
Abstract: Mechanical strain gradient generated electric polarization or flexoelectric effect was investigated in unpoled lead zirconate titanate (PZT) ceramics in the ferroelectric state by using a cantilevered beam based approach. Flexoelectric coefficient μ12 at room temperature was measured to be 1.4μC∕m in the PZT ceramic at small level of strain gradient. Temperature-dependent experimental investigations clearly showed that high dielectric permittivity in the ferroelectrics enhanced flexoelectric polarization: essentially a linear relation was found to exist between μ12 and dielectric susceptibility χ at lower permittivity level (2100–2800), while μ12 versus χ curve started to deviate from the straight line at the χ∼2800 and nonlinear enhancement of μ12 with χ was observed, with μ12 value reaching 9.5 at χ∼11000. The nonlinearity in the flexoelectric effect was associated with domain-related processes. It is suggested that flexoelectric effect can have a significant impact on epitaxial ferroelectric thin films and mesoscopic structures.

242 citations

Journal ArticleDOI
TL;DR: In this article, electric-field-forced antiferroelectric-to-ferroelectric phase transitions in several compositions of modified lead zirconate titanate stannate (Zr0.66Ti0.09Sn0.25)O3 ceramics are studied for ultra-high-fieldinduced strain actuator applications.
Abstract: Electric-field-forced antiferroelectric-to-ferroelectric phase transitions in several compositions of modified lead zirconate titanate stannate antiferroelectric ceramics are studied for ultra-high-field-induced strain actuator applications. A maximum field-induced longitudinal strain of 0.85% and volume expansion of 0.95% are observed in the ceramic composition Pb0.97La0.02(Zr0.66Ti0.09Sn0.25)O3 at room temperature. Switching from the antiferroelectric form to the ferroelectric form is controlled by the nucleation of the ferroelectric phase from the antiferroelectric phase. A switching time of <1 μs is observed under the applied field above 30 kV/cm. The polarization and strains associated with the field-forced phase transition decrease with increasing switching cycle, a so-called fatigue effect. Two types of fatigue effects are observed in these ceramic compositions. In one, the fatigue effects only proceed to a limited extent and the properties may be restored by annealing above the Curie temperature, while in the other, the fatigue effects proceed to a large extent and the properties cannot be restored completely by heat treatment. Hydrostatic pressure increases the transition field and the switching time. But when the applied electric field is larger than the transition field, the induced polarization and strain are not sensitive to increasing hydrostatic pressure until the transition field approaches the applied field.

241 citations

Journal ArticleDOI
TL;DR: In this article, the authors measured a full set of elastic, piezoelectric, and dielectric properties for the MPB composition, Ba(Zr0.2Ti0.8)O3-50(Ba0.7Ca0.3)TiO3 (BZT-50BCT), by using a resonance method.
Abstract: There is an urgent demand for high performance Pb-free piezoelectrics to substitute for the current workhorse, the lead zirconate titanate (PZT) family. Recently, a triple point (also tricritical point) type morphotropic phase boundary (MPB) in Pb-free Ba(Zr0.2Ti0.8)O3-x(Ba0.7Ca0.3)TiO3 system has been reported that shows equally as excellent piezoelectricity as soft PZT at room temperature (Liu and Ren6). In the present study, we measured a full set of elastic, piezoelectric, and dielectric properties for the MPB composition, Ba(Zr0.2Ti0.8)O3-50(Ba0.7Ca0.3)TiO3 (BZT-50BCT), by using a resonance method. The resonant method gives piezoelectric properties d33 = 546 pC/N, g33 = 15.3 × 10−3 Vm/N, electromechanical coupling factor k33 = 65%, and the elastic constant s33E = 19.7 × 10−12 m2/N, c33E = 11.3 × 1010 N/m2, which are close to the properties of soft PZT (PZT-5A). Furthermore, the piezoelectric coefficients (k33, d33), the ferroelectric properties (coercive field, remnant polarization), and the elastic ...

238 citations


Network Information
Related Topics (5)
Thin film
275.5K papers, 4.5M citations
91% related
Dielectric
169.7K papers, 2.7M citations
87% related
Amorphous solid
117K papers, 2.2M citations
86% related
Silicon
196K papers, 3M citations
86% related
Carbon nanotube
109K papers, 3.6M citations
85% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023116
2022267
2021168
2020180
2019189
2018206