scispace - formally typeset
Search or ask a question
Topic

Lead zirconate titanate

About: Lead zirconate titanate is a research topic. Over the lifetime, 7141 publications have been published within this topic receiving 150878 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, a multi-ion-beam reactive sputter (MIBERS) deposition technique was devised to grow ferroelectric lead zirconate titanate (PZT) thin films of different compositions (Zr/Ti ratios of 50/50 and 56/44) from individual metal targets of Pb, Zr, and Ti.
Abstract: A multi‐ion‐beam reactive sputter (MIBERS) deposition technique was devised to grow ferroelectric lead zirconate titanate (PZT) thin films of different compositions (Zr/Ti ratios of 50/50 and 56/44) from individual metal targets of Pb, Zr, and Ti. This technique offers a highly controllable deposition process allowing excellent uniformity in composition and thickness over a large area (7.5 cm diameter) on a reproducible basis. The PZT films were deposited on a variety of unheated substrates and annealed by two different techniques, rapid thermal annealing and conventional furnace annealing. Both techniques induced a perovskite phase with good morphology. The effect of the excess Pb content was observed in terms of the crystallization and morphology. It was seen that the presence of excess Pb tends to enhance perovskite phase formation but degrades the morphology. The effect of the substrates was observed in terms of crystallization and orientation. A low‐energy oxygen ion beam was employed to modify the f...

117 citations

Journal ArticleDOI
TL;DR: In this paper, the sintering temperature of lead zirconate titanate (PZT) ceramics could be reduced from ∼ 1250° to ∼960°C by the addition of a small amount of the lower-melting frit, B2O3-Bi2O-3-CdO.
Abstract: The low-temperature sintering of lead-based piezoelectric ceramics has been studied. The sintering temperature of lead zirconate titanate (PZT) ceramics could be reduced from ∼ 1250° to ∼960°C by the addition of a small amount of the lower-melting frit, B2O3–Bi2O3—CdO. It exhibited the following dielectric and piezoelectric properties: Kp= 0.52 to 0.58, Qm= 1000, eT33/e0= 800 to 1000, tan δ= 50 × 10−4, ρ= 7.56 to 7.64 g/cm3. Ceramics with the aid of suitable dopants (CdO, SiO2, and excess PbO) in the Pb-(Ni1/3Nb2/3)O3—PZT family could be sintered at 860° to 900°C. For these materials, Kp= 0.56 to 0.61, Qm= 1000, eT33/e0= 1500 to 2000, tan δ≤ 50 × 10−4, ρ= 7.80 to 8.03 g/cm3. The microstructure, sintering mechanism, and the effects of various impure additions have been analyzed by means of scanning electron microscopy, scanning transmission electron microscopy, electron probe microanalysis, and X-ray photoelectron spectroscopy.

117 citations

Journal ArticleDOI
TL;DR: In this article, the authors investigated piezoelectric lead zirconate titanate (PZT)-stainless steel cantilevers as real-time in-water cell detectors using yeast cells as a model system.
Abstract: We have investigated piezoelectric lead zirconate titanate (PZT)-stainless steel cantilevers as real-time in-water cell detectors using yeast cells as a model system. Earlier studies have shown that mass changes of a cantilever can be detected by monitoring the resonance frequency shift. In this study, two PZT-stainless steel cantilevers with different sensitivities were used to detect the presence of yeast cells in a suspension. The stainless steel cantilever tip was coated with poly-L-lysine that attracted yeast cells from the suspension, and immobilized them on the cantilever surface. After immersing the poly-L-lysine coated tip in a yeast suspension, the flexural resonance frequency of the cantilever was monitored with time. The flexural resonance frequency decreased with time in agreement with the optical micrographs that showed increasing amount of adsorbed yeast cells with time. The resonance frequency shifts are further shown to be consistent with both the mass of immobilized cells on the poly-L-l...

116 citations

Journal ArticleDOI
TL;DR: It is demonstrated that measurements on clamped films may considerably underestimate the piezoelectric coefficients and coupling constants of released structures used in microelectromechanical systems, energy harvesting systems, and microrobots.
Abstract: The role of long-range strain interactions on domain wall dynamics is explored through macroscopic and local measurements of nonlinear behavior in mechanically clamped and released polycrystalline lead zirconate-titanate (PZT) films. Released films show a dramatic change in the global dielectric nonlinearity and its frequency dependence as a function of mechanical clamping. Furthermore, we observe a transition from strong clustering of the nonlinear response for the clamped case to almost uniform nonlinearity for the released film. This behavior is ascribed to increased mobility of domain walls. These results suggest the dominant role of collective strain interactions mediated by the local and global mechanical boundary conditions on the domain wall dynamics. The work presented in this Letter demonstrates that measurements on clamped films may considerably underestimate the piezoelectric coefficients and coupling constants of released structures used in microelectromechanical systems, energy harvesting systems, and microrobots.

116 citations

Patent
05 Mar 1992
TL;DR: In this article, the a-axis oriented perovskite thin films are grown on a silicon substrate with an intermediate buffer layer of yttria-stabilized zirconia.
Abstract: A ferroelectric memory and its method of making in which a highly c-axis oriented layer (56) of ferroelectric lead zirconate titanate (PZT) is epitaxially deposited at between 640° and 710° C. upon a crystalline film (54) of yttrium barium copper oxide (YBCO), acting both as growth template and bottom electrode. A top electrode (58) is formed over the ferroelectric layer to complete the memory element. The two electrodes are preferably composed of the same perovskite conductor of the same cyrstalline orientation, most preferably, a-axis oriented YBCO. The structure can be grown on a silicon substrate (50) with an intermediate buffer layer (52) of yttria-stabilized zirconia. The ferroelectric behavior is optimized if the structure is cooled from its growth temperature at about 20° C./min. Such a-axis oriented perovskite thin films can be grown by continuously depositing the same or different perovskite material, but dividing the deposition into three temperature stages, a first at a temperature favoring a-axis oriented growth, a second gradually increasing the temperature to a temperature favoring c-axis growth, and a third at the c-axis growth temperature. Nonetheless, a high-quality a-axis oriented film is grown. The memory can be rejuvenated after it has become fatigued by applying a pulse of magnitude equal to that of the writing pulse but of considerably longer duration.

115 citations


Network Information
Related Topics (5)
Thin film
275.5K papers, 4.5M citations
91% related
Dielectric
169.7K papers, 2.7M citations
87% related
Amorphous solid
117K papers, 2.2M citations
86% related
Silicon
196K papers, 3M citations
86% related
Carbon nanotube
109K papers, 3.6M citations
85% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023116
2022267
2021168
2020180
2019189
2018206