scispace - formally typeset
Search or ask a question
Topic

Lift-induced drag

About: Lift-induced drag is a research topic. Over the lifetime, 2861 publications have been published within this topic receiving 41094 citations.


Papers
More filters
Proceedings ArticleDOI
01 Feb 1984
TL;DR: In this paper, a basic ground vehicle type of bluff body, the time averaged wake structure is analyzed for low and high wake flow for the low drag and high drag configurations is described.
Abstract: For a basic ground vehicle type of bluff body, the time averaged wake structure is analysed. At a model length based reynolds number of 4.29 million, detailed pressure measurements, wake survey and force measurements were done in a wind tunnel. Some flow visualisation results were also obtained. Geometric parameter varied was base slant angle. A drag breakdown revealed that almost 85% of body drag is pressure drag. Most of this drag is generated at the rear end. Wake flow exhibits a triple deck system of horseshoe vortices. Strength, existence and merging of these vortices depend upon the base slant angle. Characteristic features of the wake flow for the low drag and high drag configurations is described. Relevance of these phenomena to real ground vehicle flow is addressed.

936 citations

Journal ArticleDOI
TL;DR: A numerical study of the transient acoustophoretic motion of microparticles suspended in a liquid-filled microchannel and driven by the acoustic forces arising from an imposed standing ultrasound wave shows the transition in the acoustrophoretic particle motion from being dominated by streaming-induced drag tobeing dominated by radiation forces as a function of particle size, channel geometry, and material properties.
Abstract: We present a numerical study of the transient acoustophoretic motion of microparticles suspended in a liquid-filled microchannel and driven by the acoustic forces arising from an imposed standing ultrasound wave: the acoustic radiation force from the scattering of sound waves on the particles and the Stokes drag force from the induced acoustic streaming flow. These forces are calculated numerically in two steps. First, the thermoacoustic equations are solved to first order in the imposed ultrasound field taking into account the micrometer-thin but crucial thermoviscous boundary layer near the rigid walls. Second, the products of the resulting first-order fields are used as source terms in the time-averaged second-order equations, from which the net acoustic forces acting on the particles are determined. The resulting acoustophoretic particle velocities are quantified for experimentally relevant parameters using a numerical particle-tracking scheme. The model shows the transition in the acoustophoretic particle motion from being dominated by streaming-induced drag to being dominated by radiation forces as a function of particle size, channel geometry, and material properties.

427 citations

04 May 1936
TL;DR: In this article, the authors give formulas for the propelling or drag force experience in a uniform air stream by an airfoil or an air-foil-aileron combination, oscillating in any of three degrees of freedom; vertical flapping, torsional oscillations about a fixed axis parallel to the span and angular oscillations of the aileron about a hinge.
Abstract: Formulas are given for the propelling or drag force experience in a uniform air stream by an airfoil or an airfoil-aileron combination, oscillating in any of three degrees of freedom; vertical flapping, torsional oscillations about a fixed axis parallel to the span, and angular oscillations of the aileron about a hinge.

427 citations

Journal ArticleDOI
TL;DR: In this paper, the authors measured the lift, drag, and pitching moment about the quarter chord on a series of thin flat plates and cambered plates at chord Reynolds numbers varying between 60,000 and 200,000.
Abstract: The design of micro aerial vehicles requires a better understanding of the aerodynamics of small low-aspect-ratio wings An experimental investigation has focused on measuring the lift, drag, and pitching moment about the quarter chord on a series of thin flat plates and cambered plates at chord Reynolds numbers varying between 60,000 and 200,000 Results show that the cambered plates offer better aerodynamic characteristics and performance It also appears that the trailing-edge geometry of the wings and the turbulence intensity in the wind tunnel do not have a strong effect on the lift and drag for thin wings at low Reynolds numbers Moreover, the results did not show the presence of any hysteresis, which is usually observed with thick airfoils/wings

369 citations

01 Jul 1976
TL;DR: In this paper, a discussion of the considerations involved in the design of the winglets; measured effects of these surfaces on the aerodynamic forces, moments, and loads for a representative first generation, narrow body jet transport wing; and a comparison of these effects with those for a wing tip extension which results in approximately the same increase in bending moment at the wing-fuselage juncture as did the addition of winglets.
Abstract: Winglets, which are small, nearly vertical, winglike surfaces, substantially reduce drag coefficients at lifting conditions. The primary winglet surfaces are rearward above the wing tips; secondary surfaces are forward below the wing tips. This report presents a discussion of the considerations involved in the design of the winglets; measured effects of these surfaces on the aerodynamic forces, moments, and loads for a representative first generation, narrow body jet transport wing; and a comparison of these effects with those for a wing tip extension which results in approximately the same increase in bending moment at the wing-fuselage juncture as did the addition of the winglets.

334 citations


Network Information
Related Topics (5)
Reynolds number
68.4K papers, 1.6M citations
76% related
Laminar flow
56K papers, 1.2M citations
73% related
Boundary layer
64.9K papers, 1.4M citations
72% related
Vortex
72.3K papers, 1.3M citations
72% related
Nozzle
158.6K papers, 893K citations
70% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202344
2022105
202138
202046
201944
201849