scispace - formally typeset
Search or ask a question
Topic

Ligand (biochemistry)

About: Ligand (biochemistry) is a research topic. Over the lifetime, 26501 publications have been published within this topic receiving 1000500 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: Enrichment results demonstrate the importance of the novel XP molecular recognition and water scoring in separating active and inactive ligands and avoiding false positives.
Abstract: A novel scoring function to estimate protein-ligand binding affinities has been developed and implemented as the Glide 4.0 XP scoring function and docking protocol. In addition to unique water desolvation energy terms, protein-ligand structural motifs leading to enhanced binding affinity are included: (1) hydrophobic enclosure where groups of lipophilic ligand atoms are enclosed on opposite faces by lipophilic protein atoms, (2) neutral-neutral single or correlated hydrogen bonds in a hydrophobically enclosed environment, and (3) five categories of charged-charged hydrogen bonds. The XP scoring function and docking protocol have been developed to reproduce experimental binding affinities for a set of 198 complexes (RMSDs of 2.26 and 1.73 kcal/mol over all and well-docked ligands, respectively) and to yield quality enrichments for a set of fifteen screens of pharmaceutical importance. Enrichment results demonstrate the importance of the novel XP molecular recognition and water scoring in separating active and inactive ligands and avoiding false positives.

4,666 citations

Journal ArticleDOI
TL;DR: A graphical system for automatically generating multiple 2D diagrams of ligand-protein interactions from 3D coordinates that facilitates popular research tasks, such as analyzing a series of small molecules binding to the same protein target, a single ligand binding to homologous proteins, or the completely general case where both protein and ligand change.
Abstract: We describe a graphical system for automatically generating multiple 2D diagrams of ligand–protein interactions from 3D coordinates. The diagrams portray the hydrogen-bond interaction patterns and hydrophobic contacts between the ligand(s) and the main-chain or side-chain elements of the protein. The system is able to plot, in the same orientation, related sets of ligand–protein interactions. This facilitates popular research tasks, such as analyzing a series of small molecules binding to the same protein target, a single ligand binding to homologous proteins, or the completely general case where both protein and ligand change.

3,840 citations

Journal ArticleDOI
16 Oct 1997-Nature
TL;DR: The crystal structures of the LBD of ER in complex with the endogenous oestrogen, 17β-oestradiol, and the selective antagonist raloxifene provide a molecular basis for the distinctive pharmacophore of the ER and its catholic binding properties.
Abstract: Oestrogens are involved in the growth, development and homeostasis of a number of tissues. The physiological effects of these steroids are mediated by a ligand-inducible nuclear transcription factor, the oestrogen receptor (ER). Hormone binding to the ligand-binding domain (LBD) of the ER initiates a series of molecular events culminating in the activation or repression of target genes. Transcriptional regulation arises from the direct interaction of the ER with components of the cellular transcription machinery. Here we report the crystal structures of the LBD of ER in complex with the endogenous oestrogen, 17beta-oestradiol, and the selective antagonist raloxifene, at resolutions of 3.1 and 2.6 A, respectively. The structures provide a molecular basis for the distinctive pharmacophore of the ER and its catholic binding properties. Agonist and antagonist bind at the same site within the core of the LBD but demonstrate different binding modes. In addition, each class of ligand induces a distinct conformation in the transactivation domain of the LBD, providing structural evidence of the mechanism of antagonism.

3,255 citations

Journal ArticleDOI
23 Nov 2007-Science
TL;DR: Although the location of carazolol in the β2-adrenergic receptor is very similar to that of retinal in rhodopsin, structural differences in the ligand-binding site and other regions highlight the challenges in using rhodopin as a template model for this large receptor family.
Abstract: Heterotrimeric guanine nucleotide–binding protein (G protein)–coupled receptors constitute the largest family of eukaryotic signal transduction proteins that communicate across the membrane. We report the crystal structure of a human β2-adrenergic receptor–T4 lysozyme fusion protein bound to the partial inverse agonist carazolol at 2.4 angstrom resolution. The structure provides a high-resolution view of a human G protein–coupled receptor bound to a diffusible ligand. Ligand-binding site accessibility is enabled by the second extracellular loop, which is held out of the binding cavity by a pair of closely spaced disulfide bridges and a short helical segment within the loop. Cholesterol, a necessary component for crystallization, mediates an intriguing parallel association of receptor molecules in the crystal lattice. Although the location of carazolol in the β2-adrenergic receptor is very similar to that of retinal in rhodopsin, structural differences in the ligand-binding site and other regions highlight the challenges in using rhodopsin as a template model for this large receptor family.

3,065 citations

Journal ArticleDOI
TL;DR: Differential scanning fluorimetry (DSF) is a rapid and inexpensive screening method to identify low-molecular-weight ligands that bind and stabilize purified proteins.
Abstract: Differential scanning fluorimetry (DSF) is a rapid and inexpensive screening method to identify low-molecular-weight ligands that bind and stabilize purified proteins. The temperature at which a protein unfolds is measured by an increase in the fluorescence of a dye with affinity for hydrophobic parts of the protein, which are exposed as the protein unfolds. A simple fitting procedure allows quick calculation of the transition midpoint; the difference in the temperature of this midpoint in the presence and absence of ligand is related to the binding affinity of the small molecule, which can be a low-molecular-weight compound, a peptide or a nucleic acid. DSF is best performed using a conventional real-time PCR instrument. Ligand solutions from a storage plate are added to a solution of protein and dye, distributed into the wells of the PCR plate and fluorescence intensity measured as the temperature is raised gradually. Results can be obtained in a single day.

2,194 citations


Network Information
Related Topics (5)
Peptide sequence
84.1K papers, 4.3M citations
92% related
Receptor
159.3K papers, 8.2M citations
91% related
Phosphorylation
69.3K papers, 3.8M citations
90% related
Protein kinase A
68.4K papers, 3.9M citations
90% related
Amino acid
124.9K papers, 4M citations
88% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20233,766
20226,766
2021950
2020791
2019703
2018704