scispace - formally typeset
Search or ask a question
Topic

Light field

About: Light field is a research topic. Over the lifetime, 5357 publications have been published within this topic receiving 87424 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a large data set of irradiance and radiance measurements under sea ice has been acquired with a Remotely Operated Vehicle (ROV) in the central Arctic.
Abstract: Radiative transfer in sea ice is subject to anisotropic, multiple scattering. The impact of anisotropy on the light field under sea ice was found to be substantial and has been quantified. In this study, a large data set of irradiance and radiance measurements under sea ice has been acquired with a Remotely Operated Vehicle (ROV) in the central Arctic. Measurements are interpreted in the context of numerical radiative transfer calculations, laboratory experiments, and microstructure analysis. The ratio of synchronous measurements of transmitted irradiance to radiance shows a clear deviation from an isotropic under-ice light field. We find that the angular radiance distribution under sea ice is more downward directed than expected for an isotropic light field. This effect can be attributed to the anisotropic scattering coefficient within sea ice. Assuming an isotropic radiance distribution under sea ice leads to significant errors in light-field modeling and the interpretation of radiation measurements. Quantification of the light field geometry is crucial for correct conversion of radiance data acquired by Autonomous Underwater Vehicles (AUVs) and ROVs.

37 citations

Journal ArticleDOI
TL;DR: A new paradigm is provided that has the simplicity of light path tracing and yet provides an accurate characterization of both Fresnel and Fraunhofer diffraction, and is implemented as a shader program in OpenGL that can generate wave effects on arbitrary surfaces.
Abstract: Ray–based representations can model complex light transport but are limited in modeling diffraction effects that require the simulation of wavefront propagation. This paper provides a new paradigm that has the simplicity of light path tracing and yet provides an accurate characterization of both Fresnel and Fraunhofer diffraction. We introduce the concept of a light field transformer at the interface of transmissive occluders. This generates mathematically sound, virtual, and possibly negative-valued light sources after the occluder. From a rendering perspective the only simple change is that radiance can be temporarily negative. We demonstrate the correctness of our approach both analytically, as well by comparing values with standard experiments in physics such as the Young’s double slit. Our implementation is a shader program in OpenGL that can generate wave effects on arbitrary surfaces.

37 citations

Journal ArticleDOI
TL;DR: This paper demonstrates how light fields can be transformed into holograms, and vice versa, and proposes a novel framework to represent visual information that makes joint use of both light fields and holograms as complementary representations.
Abstract: In this paper, we propose a novel framework to represent visual information. Extending the notion of conventional image-based rendering, our framework makes joint use of both light fields and holograms as complementary representations. We demonstrate how light fields can be transformed into holograms, and vice versa. By exploiting the advantages of either representation, our proposed dual representation and processing pipeline is able to overcome the limitations inherent to light fields and holograms alone. We show various examples from synthetic and real light fields to digital holograms demonstrating advantages of either representation, such as speckle-free images, ghosting-free images, aliasing-free recording, natural light recording, aperture-dependent effects and real-time rendering which can all be achieved using the same framework. Capturing holograms under white light illumination is one promising application for future work.

37 citations

Journal ArticleDOI
TL;DR: The use of a plenoptic sensor as a light field camera to map a conventional camera image onto a cell image array in the image's sub-angular spaces to reveal the fundamental truths of the object that would be severely distorted on normal cameras under strong turbulence conditions.
Abstract: Under strong turbulence conditions, object’s images can be severely distorted and become unrecognizable throughout the observing time. Conventional image restoring algorithms do not perform effectively in these circumstances due to the loss of good references on the object. We propose the use a plenoptic sensor as a light field camera to map a conventional camera image onto a cell image array in the image’s sub-angular spaces. Accordingly, each cell image on the plenoptic sensor is equivalent to the image acquired by a sub-aperture of the imaging lens. The wavefront distortion over the lens aperture can be analyzed by comparing cell images in the plenoptic sensor. By using a modified “Laplacian” metric, we can identify a good cell image in a plenoptic image sequence. The good cell image corresponds with the time and sub-aperture area on the imaging lens where wavefront distortion becomes relatively and momentarily “flat”. As a result, it will reveal the fundamental truths of the object that would be severely distorted on normal cameras. In this paper, we will introduce the underlying physics principles and mechanisms of our approach and experimentally demonstrate its effectiveness under strong turbulence conditions. In application, our approach can be used to provide a good reference for conventional image restoring approaches under strong turbulence conditions. This approach can also be used as an independent device to perform object recognition tasks through severe turbulence distortions.

37 citations

Patent
09 Apr 2014
TL;DR: In this article, a light field projector is transmitted through an angleexpanding screen to create a glasses-free, 3D display, which can be horizontal-only parallax or full paralax.
Abstract: In exemplary implementations of this invention, light from a light field projector is transmitted through an angle-expanding screen to create a glasses-free, 3D display. The display can be horizontal-only parallax or full parallax. In the former case, a vertical diffuser may positioned in the optical stack. The angle-expanding screen may comprise two planar arrays of optical elements (e.g., lenslets or lenticules) separated from each other by the sum of their focal distances. Alternatively, a light field projector may project light rays through a focusing lens onto a diffuse, transmissive screen. In this alternative approach, the light field projector may comprise two spatial light modulators (SLMs). A focused image of the first SLM, and a slightly blurred image of the second SLM, are optically combined on the diffuser, creating a combined image that has a higher spatial resolution and a higher dynamic range than either of two SLMs.

36 citations


Network Information
Related Topics (5)
Optical fiber
167K papers, 1.8M citations
79% related
Image processing
229.9K papers, 3.5M citations
78% related
Pixel
136.5K papers, 1.5M citations
78% related
Laser
353.1K papers, 4.3M citations
78% related
Quantum information
22.7K papers, 911.3K citations
77% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023135
2022375
2021274
2020493
2019555
2018503