scispace - formally typeset
Search or ask a question
Topic

Light field

About: Light field is a research topic. Over the lifetime, 5357 publications have been published within this topic receiving 87424 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the results of numerical calculations or simple evaluations of relevant nonlinear susceptibilities for some atoms are presented in discussions of particular physical effects, such as nonlinear light scattering (three-photon scattering, harmonic generation), the effects of the field-induced optical anisotropy in an atomic gas and also the new nonlinear optical phenomena caused by dissipation of light energy in the medium or by nonstationary effects (the pulse spectral width) are considered on the basis of the developed formalism.

36 citations

Journal ArticleDOI
TL;DR: This work achieves optical focusing through scattering media by using polarization modulation based generalized DOPC using an inexpensive twisted nematic liquid crystal based spatial light modulator (SLM) and experimentally demonstrates light focusing through 3-mm thick chicken breast tissue.
Abstract: Optical scattering prevents light from being focused through thick biological tissue at depths greater than ∼1 mm. To break this optical diffusion limit, digital optical phase conjugation (DOPC) based wavefront shaping techniques are being actively developed. Previous DOPC systems employed spatial light modulators that modulated either the phase or the amplitude of the conjugate light field. Here, we achieve optical focusing through scattering media by using polarization modulation based generalized DOPC. First, we describe an algorithm to extract the polarization map from the measured scattered field. Then, we validate the algorithm through numerical simulations and find that the focusing contrast achieved by polarization modulation is similar to that achieved by phase modulation. Finally, we build a system using an inexpensive twisted nematic liquid crystal based spatial light modulator (SLM) and experimentally demonstrate light focusing through 3-mm thick chicken breast tissue. Since the polarization modulation based SLMs are widely used in displays and are having more and more pixel counts with the prevalence of 4 K displays, these SLMs are inexpensive and valuable devices for wavefront shaping.

36 citations

Proceedings ArticleDOI
07 Oct 2018
TL;DR: This paper addresses the problem of depth estimation for every viewpoint of a dense light field, exploiting information from only a sparse set of views, and proposes a method that computes disparity (or equivalently depth) forevery viewpoint taking into account occlusions.
Abstract: This paper addresses the problem of depth estimation for every viewpoint of a dense light field, exploiting information from only a sparse set of views. This problem is particularly relevant for applications such as light field reconstruction from a subset of views, for view synthesis and for compression. Unlike most existing methods for scene depth estimation from light fields, the proposed algorithm computes disparity (or equivalently depth) for every viewpoint taking into account occlusions. In addition, it preserves the continuity of the depth space and does not require prior knowledge on the depth range. The experiments show that, both for synthetic and real light fields, our algorithm achieves competitive performance to state-of-the-art algorithms which exploit the entire light field and usually generate the depth map for the center viewpoint only.

36 citations

Journal ArticleDOI
TL;DR: M Mathematical modeling of the proposed system is described herein, and it was experimentally demonstrated that the effective complex SLM displays complex holographic three-dimensional images with a clear depth discrimination effect.
Abstract: A method is proposed for the construction of a square pixel complex spatial light modulator (SLM) from a commercial oblong full-high-definition (full-HD) amplitude SLM using an anamorphic optical filter. In the proposed scheme, one half-band of the optical Fourier transform of the amplitude-only spatial light field is rejected in the optical Fourier plane and the other half-band is reformatted to be an effective complex SLM with square pixels. This has an advantage in the viewing window plane since the shape of the viewing window becomes square and more ideal for observers who watch the hologram contents through it. For optimal transformation, the amplitude computer generated hologram encoding scheme was developed. Mathematical modeling of the proposed system is described herein, and it was experimentally demonstrated that the effective complex SLM displays complex holographic three-dimensional images with a clear depth discrimination effect.

36 citations

Journal ArticleDOI
TL;DR: A deep learning based adaptive optics system to compensate the turbulence aberrations of the vector vortex mode in terms of phase distribution and mode purity and for the first time, experimental results show that through correction, the mode purity of the distorted VVB improves from 19% to 70% under the turbulence strength.
Abstract: The vector vortex beams (VVB) possessing non-separable states of light, in which polarization and orbital angular momentum (OAM) are coupled, have attracted more and more attentions in science and technology, due to the unique nature of the light field. However, atmospheric transmission distortion is a recurring challenge hampering the practical application, such as communication and imaging. In this work, we built a deep learning based adaptive optics system to compensate the turbulence aberrations of the vector vortex mode in terms of phase distribution and mode purity. A turbulence aberration correction convolutional neural network (TACCNN) model, which can learn the mapping relationship of intensity profile of the distorted vector vortex modes and the turbulence phase generated by first 20 Zernike modes, is well designed. After supervised learning plentiful experimental samples, the TACCNN model compensates turbulence aberration for VVB quickly and accurately. For the first time, experimental results show that through correction, the mode purity of the distorted VVB improves from 19% to 70% under the turbulence strength of D/r0 = 5.28 with correction time 100 ms. Furthermore, both spatial modes and the light intensity distribution can be well compensated in different atmospheric turbulence.

36 citations


Network Information
Related Topics (5)
Optical fiber
167K papers, 1.8M citations
79% related
Image processing
229.9K papers, 3.5M citations
78% related
Pixel
136.5K papers, 1.5M citations
78% related
Laser
353.1K papers, 4.3M citations
78% related
Quantum information
22.7K papers, 911.3K citations
77% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023135
2022375
2021274
2020493
2019555
2018503