scispace - formally typeset
Search or ask a question
Topic

Light field

About: Light field is a research topic. Over the lifetime, 5357 publications have been published within this topic receiving 87424 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, a laser amplifier consisting of an ensemble of atoms, three energy levels of which form two coupled transitions of arbitrary frequencies, is treated, and the gain profile (or spontaneous emission) on the transition corresponding to the weak probe wave, modified by the perturbing field on the other transition, is calculated via a susceptibility.
Abstract: A laser amplifier to be treated in this work consists of an ensemble of atoms three energy levels of which form two coupled transitions of arbitrary frequencies. Two classical monochromatic travelling light waves are to be close to resonance with the transitions. The gain profile (or spontaneous emission) on the transition corresponding to the weak “probe” wave, modified by the perturbing field on the other transition, is calculated via a susceptibility. Within this framework, the atoms are described by an ensemble-averaged density matrix with full account of level degeneracies, light polarizations, and inelastic and dephasing collisions; an extension to elastic collisions and disorientation is straightforward. An integration over the thermal velocity distribution gives results applicable to gas discharges: directionally anisotropic narrow structures superimposed on the Doppler-broadened probe-gain profile due to non-linear interference effects in addition to saturation. At alower probe frequency, a peculiar non-Lorentzian signal appears even with transparency on the perturbing transition. At low intensities a distinction is reasonable of frequency correlations due to generalized two-quantum processes, and of a dynamic Stark splitting. These effects permit an information on the linewidth of the third forbidden transition. The connection with numerous related approaches is pointed out.

207 citations

Journal ArticleDOI
TL;DR: In this article, the authors measured the absolute phase of the surface second-harmonic light field with respect to the pump field, i.e. the phase of surface nonlinear susceptibility.

206 citations

Journal ArticleDOI
TL;DR: An image-based modeling and rendering system that models a sparse light field using a set of coherent layers, and introduces a Bayesian approach, coherence matting, to estimate alpha matting around segmented layer boundaries by incorporating a coherence prior in order to maintain coherence across images.
Abstract: In this article, we present an image-based modeling and rendering system, which we call pop-up light field, that models a sparse light field using a set of coherent layers. In our system, the user specifies how many coherent layers should be modeled or popped up according to the scene complexity. A coherent layer is defined as a collection of corresponding planar regions in the light field images. A coherent layer can be rendered free of aliasing all by itself, or against other background layers. To construct coherent layers, we introduce a Bayesian approach, coherence matting, to estimate alpha matting around segmented layer boundaries by incorporating a coherence prior in order to maintain coherence across images.We have developed an intuitive and easy-to-use user interface (UI) to facilitate pop-up light field construction. The key to our UI is the concept of human-in-the-loop where the user specifies where aliasing occurs in the rendered image. The user input is reflected in the input light field images where pop-up layers can be modified. The user feedback is instant through a hardware-accelerated real-time pop-up light field renderer. Experimental results demonstrate that our system is capable of rendering anti-aliased novel views from a sparse light field.

200 citations

Journal ArticleDOI
TL;DR: It is demonstrated both theoretically and experimentally that phase gradients in a light field can be used to create a new category of optical traps complementary to the more familiar intensity-gradient traps known as optical tweezers.
Abstract: We demonstrate both theoretically and experimentally that phase gradients in a light field can be used to create a new category of optical traps complementary to the more familiar intensity-gradient traps known as optical tweezers. We further show that the work done by phase-gradient forces is path dependent and briefly discuss some ramifications of this nonconservativity.

199 citations

Patent
04 Apr 2007
TL;DR: In this article, a continuous light field is reconstructed from input samples of an input light field of a 3D scene acquired by cameras according to an acquisition parameterization, and then prefiltering and sampled to produce output samples having the display parametrization.
Abstract: A method and system acquire and display light fields. A continuous light field is reconstructed from input samples of an input light field of a 3D scene acquired by cameras according to an acquisition parameterization. The continuous light is reparameterized according to a display parameterization and then prefiltering and sampled to produce output samples having the display parametrization. The output samples are displayed as an output light field using a 3D display device.

197 citations


Network Information
Related Topics (5)
Optical fiber
167K papers, 1.8M citations
79% related
Image processing
229.9K papers, 3.5M citations
78% related
Pixel
136.5K papers, 1.5M citations
78% related
Laser
353.1K papers, 4.3M citations
78% related
Quantum information
22.7K papers, 911.3K citations
77% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023135
2022375
2021274
2020493
2019555
2018503