scispace - formally typeset
Search or ask a question
Topic

Light field

About: Light field is a research topic. Over the lifetime, 5357 publications have been published within this topic receiving 87424 citations.


Papers
More filters
Journal ArticleDOI
28 May 2009-Nature
TL;DR: Measurements of an optical system consisting of a pair of specially patterned nanoscale beams in which optical and mechanical energies are simultaneously localized to a cubic-micron-scale volume and for which large per-photon optical gradient forces are realized enable the exploration of cavity optomechanical regimes.
Abstract: The dynamic back-action caused by electromagnetic forces (radiation pressure) in optical and microwave cavities is of growing interest. Back-action cooling, for example, is being pursued as a means of achieving the quantum ground state of macroscopic mechanical oscillators. Work in the optical domain has revolved around millimetre- or micrometre-scale structures using the radiation pressure force. By comparison, in microwave devices, low-loss superconducting structures have been used for gradient-force-mediated coupling to a nanomechanical oscillator of picogram mass. Here we describe measurements of an optical system consisting of a pair of specially patterned nanoscale beams in which optical and mechanical energies are simultaneously localized to a cubic-micron-scale volume, and for which large per-photon optical gradient forces are realized. The resulting scale of the per-photon force and the mass of the structure enable the exploration of cavity optomechanical regimes in which, for example, the mechanical rigidity of the structure is dominantly provided by the internal light field itself. In addition to precision measurement and sensitive force detection, nano-optomechanics may find application in reconfigurable and tunable photonic systems, light-based radio-frequency communication and the generation of giant optical nonlinearities for wavelength conversion and optical buffering.

749 citations

Journal ArticleDOI
TL;DR: In this paper, state-of-the-art theory and experiment of the motion of cold and ultracold atoms coupled to the radiation field within a high-finesse optical resonator in the dispersive regime of the atom-field interaction with small internal excitation is reviewed.
Abstract: We review state-of-the-art theory and experiment of the motion of cold and ultracold atoms coupled to the radiation field within a high-finesse optical resonator in the dispersive regime of the atom-field interaction with small internal excitation The optical dipole force on the atoms together with the back-action of atomic motion onto the light field gives rise to a complex nonlinear coupled dynamics As the resonator constitutes an open driven and damped system, the dynamics is non-conservative and in general enables cooling and confining the motion of polarizable particles In addition, the emitted cavity field allows for real-time monitoring of the particle's position with minimal perturbation up to sub-wavelength accuracy For many-body systems, the resonator field mediates controllable long-range atom-atom interactions, which set the stage for collective phenomena Besides correlated motion of distant particles, one finds critical behavior and non-equilibrium phase transitions between states of different atomic order in conjunction with superradiant light scattering Quantum degenerate gases inside optical resonators can be used to emulate opto-mechanics as well as novel quantum phases like supersolids and spin glasses Non-equilibrium quantum phase transitions, as predicted by eg the Dicke Hamiltonian, can be controlled and explored in real-time via monitoring the cavity field In combination with optical lattices, the cavity field can be utilized for non-destructive probing Hubbard physics and tailoring long-range interactions for ultracold quantum systems

727 citations

Journal ArticleDOI
TL;DR: It is shown that, despite experimental imperfections, optical phase conjugation can force a transmitted light field to retrace its trajectory through a biological target and recover the original light field.
Abstract: Elastic optical scattering, the dominant light-interaction process in biological tissues, prevents tissues from being transparent. Although scattering may appear stochastic, it is in fact deterministic in nature. We show that, despite experimental imperfections, optical phase conjugation (λ = 532 nm) can force a transmitted light field to retrace its trajectory through a biological target and recover the original light field. For a 0.69-mm-thick chicken breast tissue section, we can enhance point-source light return by a factor of ~5 x 10^3 and achieve a light transmission enhancement factor of 3.8 within a collection angle of 29°. Additionally, we find that the reconstruction's quality, measured by the width of the reconstructed point source, is independent of tissue thickness (up to a thickness of 0.69 mm). This phenomenon may be used to enhance light transmission through tissue, enable measurement of small tissue movements, and form the basis of new tissue imaging techniques.

708 citations

Journal ArticleDOI
30 May 2002-Nature
TL;DR: In this article, a feedback-optimized coherent control over the energy-flow pathways in the light-harvesting antenna complex LH2 from Rhodopseudomonas acidophila, a photosynthetic purple bacterium, is presented.
Abstract: Coherent light sources have been widely used in control schemes that exploit quantum interference effects to direct the outcome of photochemical processes. The adaptive shaping of laser pulses is a particularly powerful tool in this context: experimental output as feedback in an iterative learning loop refines the applied laser field to render it best suited to constraints set by the experimenter. This approach has been experimentally implemented to control a variety of processes, but the extent to which coherent excitation can also be used to direct the dynamics of complex molecular systems in a condensed-phase environment remains unclear. Here we report feedback-optimized coherent control over the energy-flow pathways in the light-harvesting antenna complex LH2 from Rhodopseudomonas acidophila, a photosynthetic purple bacterium. We show that phases imprinted by the light field mediate the branching ratio of energy transfer between intra- and intermolecular channels in the complex's donor acceptor system. This result illustrates that molecular complexity need not prevent coherent control, which can thus be extended to probe and affect biological functions.

666 citations

Proceedings ArticleDOI
29 Jul 2007
TL;DR: A novel design to reconstruct the 4D light field from a 2D camera image without any additional refractive elements as required by previous light field cameras is presented.
Abstract: We describe a theoretical framework for reversibly modulating 4D light fields using an attenuating mask in the optical path of a lens based camera. Based on this framework, we present a novel design to reconstruct the 4D light field from a 2D camera image without any additional refractive elements as required by previous light field cameras. The patterned mask attenuates light rays inside the camera instead of bending them, and the attenuation recoverably encodes the rays on the 2D sensor. Our mask-equipped camera focuses just as a traditional camera to capture conventional 2D photos at full sensor resolution, but the raw pixel values also hold a modulated 4D light field. The light field can be recovered by rearranging the tiles of the 2D Fourier transform of sensor values into 4D planes, and computing the inverse Fourier transform. In addition, one can also recover the full resolution image information for the in-focus parts of the scene. We also show how a broadband mask placed at the lens enables us to compute refocused images at full sensor resolution for layered Lambertian scenes. This partial encoding of 4D ray-space data enables editing of image contents by depth, yet does not require computational recovery of the complete 4D light field.

660 citations


Network Information
Related Topics (5)
Optical fiber
167K papers, 1.8M citations
79% related
Image processing
229.9K papers, 3.5M citations
78% related
Pixel
136.5K papers, 1.5M citations
78% related
Laser
353.1K papers, 4.3M citations
78% related
Quantum information
22.7K papers, 911.3K citations
77% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023135
2022375
2021274
2020493
2019555
2018503