scispace - formally typeset
Search or ask a question
Topic

Light field

About: Light field is a research topic. Over the lifetime, 5357 publications have been published within this topic receiving 87424 citations.


Papers
More filters
Journal ArticleDOI
19 May 2017-Science
TL;DR: The observation of up to ninth-order harmonics in graphene excited by mid-infrared laser pulses at room temperature opens up the possibility of investigating strong-field and ultrafast dynamics and nonlinear behavior of massless Dirac fermions.
Abstract: The electronic properties of graphene can give rise to a range of nonlinear optical responses. One of the most desirable nonlinear optical processes is high-harmonic generation (HHG) originating from coherent electron motion induced by an intense light field. Here, we report on the observation of up to ninth-order harmonics in graphene excited by mid-infrared laser pulses at room temperature. The HHG in graphene is enhanced by an elliptically polarized laser excitation, and the resultant harmonic radiation has a particular polarization. The observed ellipticity dependence is reproduced by a fully quantum mechanical treatment of HHG in solids. The zero-gap nature causes the unique properties of HHG in graphene, and our findings open up the possibility of investigating strong-field and ultrafast dynamics and nonlinear behavior of massless Dirac fermions.

498 citations

Journal ArticleDOI
15 Mar 2007-Nature
TL;DR: A combination of adaptive control and nano-optics achieves subwavelength dynamic localization of electromagnetic intensity on the nanometre scale and thus overcome the spatial restrictions of conventional optics.
Abstract: The size of mechanical tools limits their spatial resolution. In the case of a drill, for instance, its diameter determines the size of the smallest hole that it can make, with 1-mm holes from 10-mm drills an obvious impossibility. But in the world of optics, the 'impossible' can happen. Aeschlimann et al. demonstrate a light-based tool that not only 'drills holes' smaller than its own size (its wavelength), but does so in selectable positions that can be changed at the speed of light. The experiment combines adaptive control with nano-optics, to control interactions between light and matter with sub-wavelength resolution and femtosecond timing. Adaptive shaping of the phase and amplitude of femtosecond laser pulses has been developed into an efficient tool for the directed manipulation of interference phenomena, thus providing coherent control over various quantum-mechanical systems1,2,3,4,5,6,7,8,9,10. Temporal resolution in the femtosecond or even attosecond range has been demonstrated, but spatial resolution is limited by diffraction to approximately half the wavelength of the light field (that is, several hundred nanometres). Theory has indicated11,12 that the spatial limitation to coherent control can be overcome with the illumination of nanostructures: the spatial near-field distribution was shown to depend on the linear chirp of an irradiating laser pulse. An extension of this idea to adaptive control, combining multiparameter pulse shaping with a learning algorithm, demonstrated the generation of user-specified optical near-field distributions in an optimal and flexible fashion13. Shaping of the polarization of the laser pulse14,15 provides a particularly efficient and versatile nano-optical manipulation method16,17. Here we demonstrate the feasibility of this concept experimentally, by tailoring the optical near field in the vicinity of silver nanostructures through adaptive polarization shaping of femtosecond laser pulses14,15 and then probing the lateral field distribution by two-photon photoemission electron microscopy18. In this combination of adaptive control1,2,3,4,5,6,7,8,9,10 and nano-optics19, we achieve subwavelength dynamic localization of electromagnetic intensity on the nanometre scale and thus overcome the spatial restrictions of conventional optics. This experimental realization of theoretical suggestions11,12,13,16,17,20 opens a number of perspectives in coherent control, nano-optics, nonlinear spectroscopy, and other research fields in which optical investigations are carried out with spatial or temporal resolution.

494 citations

Journal ArticleDOI
TL;DR: An optical model for light field microscopy based on wave optics, instead of previously reported ray optics models is presented, and a 3-D deconvolution method is presented that is able to reconstruct volumes at higher spatial resolution, and with better optical sectioning, than previously reported.
Abstract: Light field microscopy is a new technique for high-speed volumetric imaging of weakly scattering or fluorescent specimens It employs an array of microlenses to trade off spatial resolution against angular resolution, thereby allowing a 4-D light field to be captured using a single photographic exposure without the need for scanning The recorded light field can then be used to computationally reconstruct a full volume In this paper, we present an optical model for light field microscopy based on wave optics, instead of previously reported ray optics models We also present a 3-D deconvolution method for light field microscopy that is able to reconstruct volumes at higher spatial resolution, and with better optical sectioning, than previously reported To accomplish this, we take advantage of the dense spatio-angular sampling provided by a microlens array at axial positions away from the native object plane This dense sampling permits us to decode aliasing present in the light field to reconstruct high-frequency information We formulate our method as an inverse problem for reconstructing the 3-D volume, which we solve using a GPU-accelerated iterative algorithm Theoretical limits on the depth-dependent lateral resolution of the reconstructed volumes are derived We show that these limits are in good agreement with experimental results on a standard USAF 1951 resolution target Finally, we present 3-D reconstructions of pollen grains that demonstrate the improvements in fidelity made possible by our method

472 citations

Journal ArticleDOI
17 Apr 2020-Science
TL;DR: Using a time-dependent photonic lattice in which the topological properties can be controlled, Weidemann et al. show that such a structure can efficiently funnel light to the interface irrespective of the point of incidence on the lattice.
Abstract: Dissipation is a general feature of non-Hermitian systems. But rather than being an unavoidable nuisance, non-Hermiticity can be precisely controlled and hence used for sophisticated applications, such as optical sensors with enhanced sensitivity. In our work, we implement a non-Hermitian photonic mesh lattice by tailoring the anisotropy of the nearest-neighbor coupling. The appearance of an interface results in a complete collapse of the entire eigenmode spectrum, leading to an exponential localization of all modes at the interface. As a consequence, any light field within the lattice travels toward this interface, irrespective of its shape and input position. On the basis of this topological phenomenon, called the "non-Hermitian skin effect," we demonstrate a highly efficient funnel for light.

464 citations

Journal ArticleDOI
03 Jan 2013-Nature
TL;DR: The ultrafast reversibility of the effects implies that the physical properties of a dielectric can be controlled with the electric field of light, offering the potential for petahertz-bandwidth signal manipulation.
Abstract: The ultrafast reversibility of changes to the electronic structure and electric polarizability of a dielectric with the electric field of a laser pulse, demonstrated here, offers the potential for petahertz-bandwidth optical signal manipulation. Two studies published in this issue highlight the potential for ultrafast signal manipulation in dielectrics using optical fields. When it comes to electrical signal processing, semiconductors have become the materials of choice. However, insulators such as dielectrics could be attractive alternatives: they have a fast response in principle, but usually have extremely low conductivity at low electric fields and break down in large fields. The electronic properties of dielectrics can be controlled with few-cycle laser pulses that permit damage-free exposure of dielectrics to high electric fields. Agustin Schiffrin et al. demonstrate that strong optical laser fields with controlled few-cycle waveforms can reversibly transform a dielectric insulator into a conductor within the optical period (within one femtosecond). Martin Schultze et al. address the crucial issue of ultrafast reversibility, demonstrating that the dielectric can be repeatedly switched 'on' and 'off' with light fields, without degradation. The control of the electric and optical properties of semiconductors with microwave fields forms the basis of modern electronics, information processing and optical communications. The extension of such control to optical frequencies calls for wideband materials such as dielectrics, which require strong electric fields to alter their physical properties1,2,3,4,5. Few-cycle laser pulses permit damage-free exposure of dielectrics to electric fields of several volts per angstrom6 and significant modifications in their electronic system6,7,8,9,10,11,12,13. Fields of such strength and temporal confinement can turn a dielectric from an insulating state to a conducting state within the optical period14. However, to extend electric signal control and processing to light frequencies depends on the feasibility of reversing these effects approximately as fast as they can be induced. Here we study the underlying electron processes with sub-femtosecond solid-state spectroscopy, which reveals the feasibility of manipulating the electronic structure and electric polarizability of a dielectric reversibly with the electric field of light. We irradiate a dielectric (fused silica) with a waveform-controlled near-infrared few-cycle light field of several volts per angstrom and probe changes in extreme-ultraviolet absorptivity and near-infrared reflectivity on a timescale of approximately a hundred attoseconds to a few femtoseconds. The field-induced changes follow, in a highly nonlinear fashion, the turn-on and turn-off behaviour of the driving field, in agreement with the predictions of a quantum mechanical model. The ultrafast reversibility of the effects implies that the physical properties of a dielectric can be controlled with the electric field of light, offering the potential for petahertz-bandwidth signal manipulation.

459 citations


Network Information
Related Topics (5)
Optical fiber
167K papers, 1.8M citations
79% related
Image processing
229.9K papers, 3.5M citations
78% related
Pixel
136.5K papers, 1.5M citations
78% related
Laser
353.1K papers, 4.3M citations
78% related
Quantum information
22.7K papers, 911.3K citations
77% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023135
2022375
2021274
2020493
2019555
2018503