scispace - formally typeset
Search or ask a question
Topic

Light field

About: Light field is a research topic. Over the lifetime, 5357 publications have been published within this topic receiving 87424 citations.


Papers
More filters
Journal ArticleDOI
11 Dec 2008-Nature
TL;DR: The coherent and reversible mapping of a light field with less than one photon per pulse onto an ensemble of ∼107 atoms naturally trapped in a solid is demonstrated by coherently absorbing the light field in a suitably prepared solid-state atomic medium.
Abstract: Coherent and reversible mapping of quantum information between light and matter is an important experimental challenge in quantum information science. In particular, it is an essential requirement for the implementation of quantum networks and quantum repeaters. So far, quantum interfaces between light and atoms have been demonstrated with atomic gases, and with single trapped atoms in cavities. Here we demonstrate the coherent and reversible mapping of a light field with less than one photon per pulse onto an ensemble of approximately 10(7) atoms naturally trapped in a solid. This is achieved by coherently absorbing the light field in a suitably prepared solid-state atomic medium. The state of the light is mapped onto collective atomic excitations at an optical transition and stored for a pre-determined time of up to 1 mus before being released in a well-defined spatio-temporal mode as a result of a collective interference. The coherence of the process is verified by performing an interference experiment with two stored weak pulses with a variable phase relation. Visibilities of more than 95 per cent are obtained, demonstrating the high coherence of the mapping process at the single-photon level. In addition, we show experimentally that our interface makes it possible to store and retrieve light fields in multiple temporal modes. Our results open the way to multimode solid-state quantum memories as a promising alternative to atomic gases.

421 citations

Journal ArticleDOI
TL;DR: A comprehensive overview and discussion of research in light field image processing, including basic light field representation and theory, acquisition, super-resolution, depth estimation, compression, editing, processing algorithms for light field display, and computer vision applications of light field data are presented.
Abstract: Light field imaging has emerged as a technology allowing to capture richer visual information from our world. As opposed to traditional photography, which captures a 2D projection of the light in the scene integrating the angular domain, light fields collect radiance from rays in all directions, demultiplexing the angular information lost in conventional photography. On the one hand, this higher dimensional representation of visual data offers powerful capabilities for scene understanding, and substantially improves the performance of traditional computer vision problems such as depth sensing, post-capture refocusing, segmentation, video stabilization, material classification, etc. On the other hand, the high-dimensionality of light fields also brings up new challenges in terms of data capture, data compression, content editing, and display. Taking these two elements together, research in light field image processing has become increasingly popular in the computer vision, computer graphics, and signal processing communities. In this paper, we present a comprehensive overview and discussion of research in this field over the past 20 years. We focus on all aspects of light field image processing, including basic light field representation and theory, acquisition, super-resolution, depth estimation, compression, editing, processing algorithms for light field display, and computer vision applications of light field data.

412 citations

Journal ArticleDOI
20 Feb 2015
TL;DR: In this article, the Fourier ptychography was used to estimate the 3D complex transmittance function of the sample at multiple depths, without any weak or single-scattering approximations.
Abstract: Realizing high resolution across large volumes is challenging for 3D imaging techniques with high-speed acquisition. Here, we describe a new method for 3D intensity and phase recovery from 4D light field measurements, achieving enhanced resolution via Fourier ptychography. Starting from geometric optics light field refocusing, we incorporate phase retrieval and correct diffraction artifacts. Further, we incorporate dark-field images to achieve lateral resolution beyond the diffraction limit of the objective (5× larger NA) and axial resolution better than the depth of field, using a low-magnification objective with a large field of view. Our iterative reconstruction algorithm uses a multislice coherent model to estimate the 3D complex transmittance function of the sample at multiple depths, without any weak or single-scattering approximations. Data are captured by an LED array microscope with computational illumination, which enables rapid scanning of angles for fast acquisition. We demonstrate the method with thick biological samples in a modified commercial microscope, indicating the technique’s versatility for a wide range of applications.

403 citations

Journal ArticleDOI
TL;DR: In this paper, the authors describe a scheme to create optical beams with isolated optical vortex loops in the forms of knots and links using algebraic topology and apply a numerical optimization algorithm to increase the contrast in light intensity.
Abstract: Guided by a general framework for wavefront engineering, experiments demonstrate that in a light field, lines of zero intensity can be shaped into knotted and linked loops of arbitrary topology. Natural and artificially created light fields in three-dimensional space contain lines of zero intensity, known as optical vortices1,2,3. Here, we describe a scheme to create optical beams with isolated optical vortex loops in the forms of knots and links using algebraic topology. The required complex fields with fibred knots and links4 are constructed from abstract functions with braided zeros and the knot function is then embedded in a propagating light beam. We apply a numerical optimization algorithm to increase the contrast in light intensity, enabling us to observe several optical vortex knots. These knotted nodal lines, as singularities of the wave’s phase, determine the topology of the wave field in space, and should have analogues in other three-dimensional wave systems such as superfluids5 and Bose–Einstein condensates6,7.

401 citations

Proceedings ArticleDOI
16 Jun 2012
TL;DR: A novel paradigm to deal with depth reconstruction from 4D light fields in a variational framework is presented, taking into account the special structure of light field data, and reformulate the problem of stereo matching to a constrained labeling problem on epipolar plane images.
Abstract: We present a novel paradigm to deal with depth reconstruction from 4D light fields in a variational framework. Taking into account the special structure of light field data, we reformulate the problem of stereo matching to a constrained labeling problem on epipolar plane images, which can be thought of as vertical and horizontal 2D cuts through the field. This alternative formulation allows to estimate accurate depth values even for specular surfaces, while simultaneously taking into account global visibility constraints in order to obtain consistent depth maps for all views. The resulting optimization problems are solved with state-of-the-art convex relaxation techniques. We test our algorithm on a number of synthetic and real-world examples captured with a light field gantry and a plenoptic camera, and compare to ground truth where available. All data sets as well as source code are provided online for additional evaluation.

385 citations


Network Information
Related Topics (5)
Optical fiber
167K papers, 1.8M citations
79% related
Image processing
229.9K papers, 3.5M citations
78% related
Pixel
136.5K papers, 1.5M citations
78% related
Laser
353.1K papers, 4.3M citations
78% related
Quantum information
22.7K papers, 911.3K citations
77% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023135
2022375
2021274
2020493
2019555
2018503