scispace - formally typeset
Search or ask a question
Topic

Light-gated ion channel

About: Light-gated ion channel is a research topic. Over the lifetime, 518 publications have been published within this topic receiving 41952 citations.


Papers
More filters
Journal ArticleDOI
05 Dec 2013-Nature
TL;DR: In this article, a high-resolution electron cryo-microscopy structure of the rat transient receptor potential (TRP) channel in its closed state is presented; the overall structure of this ion channel is found to share some common features with voltage-gated ion channels, although several unique, TRP-specific features are also characterized.
Abstract: Transient receptor potential (TRP) channels are sensors for a wide range of cellular and environmental signals, but elucidating how these channels respond to physical and chemical stimuli has been hampered by a lack of detailed structural information. Here we exploit advances in electron cryo-microscopy to determine the structure of a mammalian TRP channel, TRPV1, at 3.4 A resolution, breaking the side-chain resolution barrier for membrane proteins without crystallization. Like voltage-gated channels, TRPV1 exhibits four-fold symmetry around a central ion pathway formed by transmembrane segments 5–6 (S5–S6) and the intervening pore loop, which is flanked by S1–S4 voltage-sensor-like domains. TRPV1 has a wide extracellular ‘mouth’ with a short selectivity filter. The conserved ‘TRP domain’ interacts with the S4–S5 linker, consistent with its contribution to allosteric modulation. Subunit organization is facilitated by interactions among cytoplasmic domains, including amino-terminal ankyrin repeats. These observations provide a structural blueprint for understanding unique aspects of TRP channel function. A high-resolution electron cryo-microscopy structure of the rat transient receptor potential (TRP) channel TRPV1 in its ‘closed’ state is presented; the overall structure of this ion channel is found to share some common features with voltage-gated ion channels, although several unique, TRP-specific features are also characterized. Transient receptor potential (TRP) channels are sensors for a wide range of physical and chemical stimuli. In the first of a pair of related papers, Maofu Liao et al. solve the high-resolution electron cryo-microscopy structure of rat TRPV1, the receptor for capsaicin (a pungent agent from chili peppers), in a 'closed' state. The overall structure is fairly similar to that of a voltage-gated ion channel, but there are several structural features unique to TRP channels. In the second paper, Erhu Cao et al. present the structures of rat TRPV1 in the presence of a peptide neurotoxin (resiniferatoxin) and in the presence of capsaicin, yielding structures of activated states of the channel. Comparison of the closed and open structures suggests that TRPV1 has a unique two-gate mechanism of channel activation.

1,419 citations

Journal ArticleDOI
TL;DR: CNG channels are nonselective cation channels that do not discriminate well between alkali ions and even pass divalent cations, in particular Ca2+.
Abstract: Cyclic nucleotide-gated (CNG) channels are nonselective cation channels first identified in retinal photoreceptors and olfactory sensory neurons (OSNs). They are opened by the direct binding of cyclic nucleotides, cAMP and cGMP. Although their activity shows very little voltage dependence, CNG channels belong to the superfamily of voltage-gated ion channels. Like their cousins the voltage-gated K+ channels, CNG channels form heterotetrameric complexes consisting of two or three different types of subunits. Six different genes encoding CNG channels, four A subunits (A1 to A4) and two B subunits (B1 and B3), give rise to three different channels in rod and cone photoreceptors and in OSNs. Important functional features of these channels, i.e., ligand sensitivity and selectivity, ion permeation, and gating, are determined by the subunit composition of the respective channel complex. The function of CNG channels has been firmly established in retinal photoreceptors and in OSNs. Studies on their presence in other sensory and nonsensory cells have produced mixed results, and their purported roles in neuronal pathfinding or synaptic plasticity are not as well understood as their role in sensory neurons. Similarly, the function of invertebrate homologs found in Caenorhabditis elegans, Drosophila, and Limulus is largely unknown, except for two subunits of C. elegans that play a role in chemosensation. CNG channels are nonselective cation channels that do not discriminate well between alkali ions and even pass divalent cations, in particular Ca2+. Ca2+ entry through CNG channels is important for both excitation and adaptation of sensory cells. CNG channel activity is modulated by Ca2+/calmodulin and by phosphorylation. Other factors may also be involved in channel regulation. Mutations in CNG channel genes give rise to retinal degeneration and color blindness. In particular, mutations in the A and B subunits of the CNG channel expressed in human cones cause various forms of complete and incomplete achromatopsia.

1,159 citations

Journal ArticleDOI
20 Sep 2007-Nature
TL;DR: Between the acidic residues and the transmembrane pore lies a disulphide-rich 'thumb' domain poised to couple the binding of protons to the opening of the ion channel, thus demonstrating that proton activation involves long-range conformational changes.
Abstract: Acid-sensing ion channels (ASICs) are voltage-independent, proton-activated receptors that belong to the epithelial sodium channel/degenerin family of ion channels and are implicated in perception of pain, ischaemic stroke, mechanosensation, learning and memory. Here we report the low-pH crystal structure of a chicken ASIC1 deletion mutant at 1.9 A resolution. Each subunit of the chalice-shaped homotrimer is composed of short amino and carboxy termini, two transmembrane helices, a bound chloride ion and a disulphide-rich, multidomain extracellular region enriched in acidic residues and carboxyl-carboxylate pairs within 3 A, suggesting that at least one carboxyl group bears a proton. Electrophysiological studies on aspartate-to-asparagine mutants confirm that these carboxyl-carboxylate pairs participate in proton sensing. Between the acidic residues and the transmembrane pore lies a disulphide-rich 'thumb' domain poised to couple the binding of protons to the opening of the ion channel, thus demonstrating that proton activation involves long-range conformational changes.

1,001 citations

Journal ArticleDOI
TL;DR: Experiments reveal that this family of channels is built upon a common structural theme with variations appropriate for functional specialization of each channel type.
Abstract: The voltage-sensitive ion channels are responsible for generation of conducted action potentials in excitable cells and for a wide range of regulatory events in nonexcitable cells. On depolarization, permeability to sodium, calcium, or potassium increases dramatically over a period of 0.5 to hundreds of milliseconds and then decreases to the baseline level over a period of 2 msec to seconds. This biphasic behavior is described in terms of two experimentally separable processes that control ion channel function: activation, which controls the rate and voltage dependence of the ion permeability increase following depolarization, and inactivation, which controls the rate and voltage dependence of the subsequent return of ion permeability to the resting level during a maintained depolarization. These channels can therefore exist in three functionally distinct states or groups of states: resting, active, and inactivated. Both resting and inactivated states are nonconducting, but channels that have been inactivated by prolonged depolarization are refractory unless the cell is repolarized to allow them to return to the resting state.

923 citations

Journal ArticleDOI
TL;DR: Electron microscopy, affinity labeling, and mutagenesis experiments, together with secondary structure predictions and measurements, suggest an all-beta folding of the N-terminal extracellular domain, with the connecting loops contributing to the ACh binding pocket and to the subunit interfaces that mediate the allosteric transitions between conformational states.
Abstract: nAChRs are pentameric transmembrane proteins into the superfamily of ligand-gated ion channels that includes the 5HT3, glycine, GABAA, and GABAC receptors. Electron microscopy, affinity labeling, and mutagenesis experiments, together with secondary structure predictions and measurements, suggest an all-β folding of the N-terminal extracellular domain, with the connecting loops contributing to the ACh binding pocket and to the subunit interfaces that mediate the allosteric transitions between conformational states. The ion channel consists of two distinct elements symmetrically organized along the fivefold axis of the molecule: a barrel of five M2 helices, and on the cytoplasmic side five loops contributing to the selectivity filter. The allosteric transitions of the protein underlying the physiological ACh-evoked activation and desensitization possibly involve rigid body motion of the extracellular domain of each subunit, linked to a global reorganization of the transmembrane domain responsible for channe...

795 citations


Network Information
Related Topics (5)
Binding site
48.1K papers, 2.5M citations
79% related
Protein structure
42.3K papers, 3M citations
78% related
Protein kinase A
68.4K papers, 3.9M citations
77% related
Phosphorylation
69.3K papers, 3.8M citations
77% related
Peptide sequence
84.1K papers, 4.3M citations
76% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20237
20228
20182
201712
201613
201519