scispace - formally typeset
Search or ask a question

Showing papers on "Light scattering published in 2019"


Journal ArticleDOI
TL;DR: In this article, a unified description of such exotic scattering phenomena and the origin of all these effects can be traced back to the properties of poles and zeros of the underlying scattering matrix are established.
Abstract: The scattering of electromagnetic waves lies at the heart of most experimental techniques over nearly the entire electromagnetic spectrum, ranging from radio waves to optics and x rays. Hence, deep insight into the basics of scattering theory and an understanding of the peculiar features of electromagnetic scattering are necessary for the correct interpretation of experimental data and an understanding of the underlying physics. Recently, a broad spectrum of exceptional scattering phenomena attainable in suitably engineered structures has been predicted and demonstrated. Examples include bound states in the continuum, exceptional points in parity–time (PT)-symmetrical non-Hermitian systems, coherent perfect absorption, virtual perfect absorption, nontrivial lasing, nonradiating sources, and others. In this paper, we establish a unified description of such exotic scattering phenomena and show that the origin of all these effects can be traced back to the properties of poles and zeros of the underlying scattering matrix. We provide insights on how managing these special points in the complex frequency plane provides a powerful approach to tailor unusual scattering regimes.

156 citations


Journal ArticleDOI
TL;DR: A novel scattering-matrix-assisted retrieval technique (SMART) to demultiplex OAM channels from highly scattered optical fields is proposed and high-fidelity transmission of both gray and color images under scattering conditions is demonstrated, reducing the error rate by 21 times compared to previous reports.
Abstract: Multiplexing multiple orbital angular momentum (OAM) channels enables high-capacity optical communication. However, optical scattering from ambient microparticles in the atmosphere or mode coupling in optical fibers significantly decreases the orthogonality between OAM channels for demultiplexing and eventually increases crosstalk in communication. Here, we propose a novel scattering-matrix-assisted retrieval technique (SMART) to demultiplex OAM channels from highly scattered optical fields and achieve an experimental crosstalk of –13.8 dB in the parallel sorting of 24 OAM channels after passing through a scattering medium. The SMART is implemented in a self-built data transmission system that employs a digital micromirror device to encode OAM channels and realize reference-free calibration simultaneously, thereby enabling a high tolerance to misalignment. We successfully demonstrate high-fidelity transmission of both gray and color images under scattering conditions at an error rate of <0.08%. This technique might open the door to high-performance optical communication in turbulent environments.

147 citations


Journal ArticleDOI
TL;DR: This work suggests and demonstrates experimentally a novel effect manifested in the nearly complete simultaneous suppression of both forward and backward scattered fields that demonstrates zero reflection with transverse scattering and strong field enhancement for resonant light filtering, nonlinear effects, and sensing.
Abstract: All-dielectric resonant nanophotonics lies at the heart of modern optics and nanotechnology due to the unique possibilities to control scattering of light from high-index dielectric nanoparticles and metasurfaces. One of the important concepts of dielectric Mie-resonant nanophotonics is associated with the Kerker effect that drives the unidirectional scattering of light from nanoantennas and Huygens metasurfaces. Here we suggest and demonstrate experimentally a novel effect manifested in the nearly complete simultaneous suppression of both forward and backward scattered fields. This effect is governed by the Fano resonance of an electric dipole and off-resonant quadrupoles, providing necessary phases and amplitudes of the scattered fields to achieve the transverse scattering. We extend this concept to dielectric metasurfaces that demonstrate zero reflection with transverse scattering and strong field enhancement for resonant light filtering, nonlinear effects, and sensing.

132 citations


Journal ArticleDOI
20 Sep 2019
TL;DR: In this article, a computational multi-slice beam propagation method was used to invert the optical scattering process and reconstruct high-resolution (NA>1.0) 3D volumetric refractive index distributions of multiple-scattering samples.
Abstract: Optical diffraction tomography (ODT) reconstructs a sample’s volumetric refractive index (RI) to create high-contrast, quantitative 3D visualizations of biological samples. However, standard implementations of ODT use interferometric systems, and so are sensitive to phase instabilities, complex mechanical design, and coherent noise. Furthermore, their reconstruction framework is typically limited to weakly scattering samples, and thus excludes a whole class of multiple-scattering samples. Here, we implement a new 3D RI microscopy technique that utilizes a computational multi-slice beam propagation method to invert the optical scattering process and reconstruct high-resolution (NA>1.0) 3D RI distributions of multiple-scattering samples. The method acquires intensity-only measurements from different illumination angles and then solves a nonlinear optimization problem to recover the sample’s 3D RI distribution. We experimentally demonstrate the reconstruction of samples with varying amounts of multiple-scattering: a 3T3 fibroblast cell, a cluster of C. elegans embryos, and a whole C. elegans worm, with lateral and axial resolutions of ≤240 nm and ≤900 nm, respectively. The results of this work lays groundwork for future studies into using optical wavelengths to probe 3D RI distributions of highly scattering biological organisms.

126 citations


Journal ArticleDOI
Meng Lyu1, Hao Wang1, Guowei Li1, Shanshan Zheng1, Guohai Situ1 
19 Jun 2019
TL;DR: In this article, a hybrid neural network was proposed for computational imaging through a scattering medium with an optical thickness of over 10 times the scattering mean free path, and the reconstruction of image information from various targets hidden behind a white polystyrene slab of 3mm in thickness.
Abstract: The problem of imaging through thick scattering media is encountered in many disciplines of science, ranging from mesoscopic physics to astronomy. Photons become diffusive after propagating through a scattering medium with an optical thickness of over 10 times the scattering mean free path. As a result, no image but only noise-like patterns can be directly formed. We propose a hybrid neural network for computational imaging through such thick scattering media, demonstrating the reconstruction of image information from various targets hidden behind a white polystyrene slab of 3 mm in thickness or 13.4 times the scattering mean free path. We also demonstrate that the target image can be retrieved with acceptable quality from a very small fraction of its scattered pattern, suggesting that the speckle pattern produced in this way is highly redundant. This leads to a profound question of how the information of the target being encoded into the speckle is to be addressed in future studies.

122 citations


Journal ArticleDOI
TL;DR: Although the authors observe an increased external quantum efficiency (EQE) with scattering foils, the analysis indicates that areas outside the active area have a significant contribution, demonstrating that caution is required when efficiency conclusions are transferred to large area applications, for which effects that scale with the edges become less significant.
Abstract: Improving the efficiency of organic light-emitting diodes (OLEDs) by enhancing light outcoupling is common practise and remains relevant as not all optical losses can be avoided. Especially, externally attached scattering layers combine several advantages. They can significantly increase the performance and neither compromise the electric operation nor add high costs during fabrication. Efficiency evaluations of external scattering layers are often done with lab scale OLEDs. In this work we therefore study different characterization techniques of red, green and blue lab scale OLEDs with attached light scattering foils comprising TiO2 particles. Although we observe an increased external quantum efficiency (EQE) with scattering foils, our analysis indicates that areas outside the active area have a significant contribution. This demonstrates that caution is required when efficiency conclusions are transferred to large area applications, for which effects that scale with the edges become less significant. We propose to investigate brightness profiles additionally to a standard EQE characterizations as latter only work if the lateral scattering length is much smaller than the width of the active area of the OLED. Our results are important to achieve more reliable predictions as well as a higher degree of comparability between different research groups in future.

104 citations


Journal ArticleDOI
TL;DR: In this article, an accurate, closed-form expression for the nonlinear interference power in coherent optical transmission systems in the presence of inter-channel stimulated Raman scattering (ISRS) is derived.
Abstract: An accurate, closed-form expression evaluating the nonlinear interference (NLI) power in coherent optical transmission systems in the presence of inter-channel stimulated Raman scattering (ISRS) is derived. The analytical result enables a rapid estimate of the signal-to-noise ratio and avoids the need for integral evaluations and split-step simulations. The formula also provides a new insight into the underlying parameter dependence of ISRS on the NLI. Additionally, it accounts for the dispersion slope and arbitrary launch power distributions including variably loaded fiber spans. The latter enables real-time modeling of optical mesh networks. The results is applicable for lumped amplified, dispersion unmanaged, and ultra-wideband transmission systems. The accuracy of the closed-form expression is compared to numerical integration of the ISRS Gaussian noise model and split-step simulations in a point-to-point transmission, as well as in a mesh optical network scenario.

104 citations


Journal ArticleDOI
TL;DR: This work shows analytically that all the observables are split into a helicity dependent and independent part and applies this chiral T-matrix framework to optical tweezers where a tightly focused chiral field is used to trap an optically active spherical particle, and calculates the chiral behaviour of optical trapping stiffnesses and their size scaling.
Abstract: Modeling optical tweezers in the T-matrix formalism has been of key importance for accurate and efficient calculations of optical forces and their comparison with experiments. Here we extend this formalism to the modeling of chiral optomechanics and optical tweezers where chiral light is used for optical manipulation and trapping of optically active particles. We first use the Bohren decomposition to deal with the light scattering of chiral light on optically active particles. Thus, we show analytically that all the observables (cross sections, asymmetry parameters) are split into a helicity dependent and independent part and study a practical example of a complex resin particle with inner copper-coated stainless steel helices. Then, we apply this chiral T-matrix framework to optical tweezers where a tightly focused chiral field is used to trap an optically active spherical particle, calculate the chiral behaviour of optical trapping stiffnesses and their size scaling, and extend calculations to chiral nanowires and clusters of astrophysical interest. Such general light scattering framework opens perspectives for modeling optical forces on biological materials where optically active amino acids and carbohydrates are present.

94 citations


Journal ArticleDOI
TL;DR: In this paper, the anisotropic anisotropy of light scattering along the object's surface is controlled to self-stabilize when rotated and/or translated relative to the optical axis.
Abstract: Light is a powerful tool to manipulate matter, but existing approaches often necessitate focused, high-intensity light that limits the manipulated object’s shape, material and size. Here, we report that self-stabilizing optical manipulation of macroscopic—millimetre-, centimetre- and even metre-scale—objects could be achieved by controlling the anisotropy of light scattering along the object’s surface. In a scalable design that features silicon resonators on silica substrate, we identify nanophotonic structures that can self-stabilize when rotated and/or translated relative to the optical axis. Nanoscale control of scattering across a large area creates restoring behaviour by engineering the scattered phase, without needing to focus incident light or excessively constrain the shape, size or material composition of the object. Our findings may lead to platforms for manipulating macroscopic objects, with applications ranging from contactless wafer-scale fabrication and assembly, to trajectory control for ultra-light spacecraft and even laser-propelled light sails for space exploration.

90 citations


Journal ArticleDOI
TL;DR: In this paper, the authors used mini-emulsion polymerization to generate small particle analogues of three insoluble conjugated polymer photocatalysts, which showed hydrogen evolution rates with a sacrificial donor under broadband illumination that are between two and three times higher than the corresponding bulk polymers.
Abstract: Here, we present the use of mini-emulsion polymerization to generate small particle analogues of three insoluble conjugated polymer photocatalysts. These materials show hydrogen evolution rates with a sacrificial donor under broadband illumination that are between two and three times higher than the corresponding bulk polymers. The most active emulsion particles displayed a hydrogen evolution rate of 60.6 mmol h−1 g−1 under visible light (λ > 420 nm), which is the highest reported rate for an organic polymer. More importantly, the emulsion particles display far better catalytic lifetimes than previous polymer nanoparticles and they are also effective at high concentrations, allowing external quantum efficiencies as high as 20.4% at 420 nm. A limited degree of aggregation of the polymer particles maximizes the photocatalytic activity, possibly because of light scattering and enhanced light absorption.

80 citations


Journal ArticleDOI
TL;DR: This work introduces a novel concept of hybrid metal-dielectric meta-antenna supporting type II hyperbolic dispersion, which enables full control of absorption and scattering of light in the visible/near-infrared spectral range and demonstrates that two main modes can be excited by direct coupling with the free-space radiation.
Abstract: We introduce a novel concept of hybrid metal-dielectric meta-antenna supporting type II hyperbolic dispersion, which enables full control of absorption and scattering of light in the visible/near-infrared spectral range. This ability lies in the different nature of the localized hyperbolic Bloch-like modes excited within the meta-antenna. The experimental evidence is corroborated by a comprehensive theoretical study. In particular, we demonstrate that two main modes, one radiative and one non-radiative, can be excited by direct coupling with the free-space radiation. We show that the scattering is the dominating electromagnetic decay channel, when an electric dipolar mode is induced in the system, whereas a strong absorption process occurs when a magnetic dipole is excited. Also, by varying the geometry of the system, the relative ratio of scattering and absorption, as well as their relative enhancement and/or quenching, can be tuned at will over a broad spectral range, thus enabling full control of the t...

Journal ArticleDOI
TL;DR: In this paper, the authors demonstrate a new magneto-optical effect, namely, tuning of inelastically scattered light through symmetry control in atomically thin chromium triiodide (CrI$_3$).
Abstract: The coupling between spin and charge degrees of freedom in a crystal imparts strong optical signatures on scattered electromagnetic waves. This has led to magneto-optical effects with a host of applications, from the sensitive detection of local magnetic order to optical modulation and data storage technologies. Here, we demonstrate a new magneto-optical effect, namely, the tuning of inelastically scattered light through symmetry control in atomically thin chromium triiodide (CrI$_3$). In monolayers, we found an extraordinarily large magneto-optical Raman effect from an A$_{1g}$ phonon mode due to the emergence of ferromagnetic order. The linearly polarized, inelastically scattered light rotates by ~40$^o$, more than two orders of magnitude larger than the rotation from MOKE under the same experimental conditions. In CrI$_3$ bilayers, we show that the same A$_{1g}$ phonon mode becomes Davydov-split into two modes of opposite parity, exhibiting divergent selection rules that depend on inversion symmetry and the underlying magnetic order. By switching between the antiferromagnetic states and the fully spin-polarized states with applied magnetic and electric fields, we demonstrate the magnetoelectrical control over their selection rules. Our work underscores the unique opportunities provided by 2D magnets for controlling the combined time-reversal and inversion symmetries to manipulate Raman optical selection rules and for exploring emergent magneto-optical effects and spin-phonon coupled physics.

Journal ArticleDOI
TL;DR: A gradient light interference microscopy method in a reflection geometry which allows for label-free phase imaging of bulk and opaque samples and can be used to solve the inverse scattering problem and reconstruct the tomography of single cells and model organisms.
Abstract: Multiple scattering and absorption limit the depth at which biological tissues can be imaged with light. In thick unlabeled specimens, multiple scattering randomizes the phase of the field and absorption attenuates light that travels long optical paths. These obstacles limit the performance of transmission imaging. To mitigate these challenges, we developed an epi-illumination gradient light interference microscope (epi-GLIM) as a label-free phase imaging modality applicable to bulk or opaque samples. Epi-GLIM enables studying turbid structures that are hundreds of microns thick and otherwise opaque to transmitted light. We demonstrate this approach with a variety of man-made and biological samples that are incompatible with imaging in a transmission geometry: semiconductors wafers, specimens on opaque and birefringent substrates, cells in microplates, and bulk tissues. We demonstrate that the epi-GLIM data can be used to solve the inverse scattering problem and reconstruct the tomography of single cells and model organisms. Quantitative phase imaging techniques have been limited by multiple scattering of light or its use in transmission mode. Here, the authors show a gradient light interference microscopy method in a reflection geometry which allows for label-free phase imaging of bulk and opaque samples.

Journal ArticleDOI
TL;DR: Findings show that hot carriers and photoluminescence play a major role in the upconverted emission, as well as previous emission studies using ultrafast lasers, which gives the average number of participating photons as a function of emission wavelength.
Abstract: The origin of light emission from plasmonic nanoparticles has been strongly debated lately. It is present as the background of surface-enhanced Raman scattering and, despite the low yield, has been used for novel sensing and imaging applications because of its photostability. Although the role of surface plasmons as an enhancing antenna is widely accepted, the main controversy regarding the mechanism of the emission is its assignment to either radiative recombination of hot carriers (photoluminescence) or electronic Raman scattering (inelastic light scattering). We have previously interpreted the Stokes-shifted emission from gold nanorods as the Purcell effect enhanced radiative recombination of hot carriers. Here we specifically focused on the anti-Stokes emission from single gold nanorods of varying aspect ratios with excitation wavelengths below and above the interband transition threshold while still employing continuous wave lasers. Analysis of the intensity ratios between Stokes and anti-Stokes emis...

Journal ArticleDOI
TL;DR: Accurate modeling based on Brownian dynamics simulations with appropriate optical and hydrodynamic coupling confirms that this rich scenario is crucially dependent on the non-spherical shape of the nanowires.
Abstract: Silicon nanowires are held and manipulated in controlled optical traps based on counter-propagating beams focused by low numerical aperture lenses. The double-beam configuration compensates light scattering forces enabling an in-depth investigation of the rich dynamics of trapped nanowires that are prone to both optical and hydrodynamic interactions. Several polarization configurations are used, allowing the observation of optical binding with different stable structure as well as the transfer of spin and orbital momentum of light to the trapped silicon nanowires. Accurate modeling based on Brownian dynamics simulations with appropriate optical and hydrodynamic coupling confirms that this rich scenario is crucially dependent on the non-spherical shape of the nanowires. Such an increased level of optical control of multiparticle structure and dynamics open perspectives for nanofluidics and multi-component light-driven nanomachines.

Journal ArticleDOI
TL;DR: In this article, the authors present the generation of whispering gallery magnons with unprecedented high wave vectors via nonlinear 3-magnon scattering in a magnetic disc which is in the vortex state.
Abstract: We present the generation of whispering gallery magnons with unprecedented high wave vectors via nonlinear 3-magnon scattering in a $\ensuremath{\mu}\mathrm{m}$-sized magnetic ${\mathrm{Ni}}_{81}{\mathrm{Fe}}_{19}$ disc which is in the vortex state. These modes exhibit a strong localization at the perimeter of the disc and practically zero amplitude in an extended area around the vortex core. They originate from the splitting of the fundamental radial magnon modes, which can be resonantly excited in a vortex texture by an out-of-plane microwave field. We shed light on the basics of this nonlinear scattering mechanism from an experimental and theoretical point of view. Using Brillouin light scattering microscopy, we investigated the frequency and power dependence of the 3-magnon splitting. The spatially resolved mode profiles give evidence for the localization at the boundaries of the disc and allow for a direct determination of the modes wave number.

Journal ArticleDOI
TL;DR: This paper proposes the absorption light scattering model (ALSM), which can be used to reasonably explain the absorbed light imaging process for low-light images, and identifies that the minimum channel of ALSM obtained above exhibits high local similarity.
Abstract: Low light often leads to poor image visibility, which can easily affect the performance of computer vision algorithms. First, this paper proposes the absorption light scattering model (ALSM), which can be used to reasonably explain the absorbed light imaging process for low-light images. In addition, the absorbing light scattering image obtained via ALSM under a sufficient and uniform illumination can reproduce hidden outlines and details from the low-light image. Then, we identify that the minimum channel of ALSM obtained above exhibits high local similarity. This similarity can be constrained by superpixels, which effectively prevent the use of gradient operations at the edges so that the noise is not amplified quickly during enhancement. Finally, by analyzing the monotonicity between the scene reflection and the atmospheric light or transmittance in ALSM, a new low-light image enhancement method is identified. We replace atmospheric light with inverted atmospheric light to reduce the contribution of atmospheric light in the imaging results. Moreover, a soft jointed mean-standard-deviation (MSD) mechanism is proposed that directly acts on the patches represented by the superpixels. The MSD can obtain a smaller transmittance than that obtained by the minimum strategy, and it can be automatically adjusted according to the information of the image. The experiments on challenging low-light images are conducted to reveal the advantages of our method compared with other powerful techniques.

Journal ArticleDOI
20 Jun 2019
TL;DR: In this article, the authors demonstrate electromechanically excited Brillouin scattering in integrated optical waveguides made of piezoelectric material aluminum nitride (AlN), where acoustic phonons of 16 GHz in frequency are excited with nanofabricated electromechanical transducers to scatter counterpropagating photons in the waveguide into a single anti-Stokes sideband.
Abstract: In the well-known stimulated Brillouin scattering (SBS) process, spontaneous acoustic phonons in materials are stimulated by laser light and scatter the latter into a Stokes sideband. SBS becomes more pronounced in optical fibers and has been harnessed to amplify optical signals and even achieve lasing. Exploitation of SBS has recently surged on integrated photonics platforms, as simultaneous confinement of photons and phonons in waveguides leads to drastically enhanced interaction. Instead of being optically stimulated, coherent phonons can also be electromechanically excited with very high efficiency, as has been exploited in radio frequency acoustic filters. Here, we demonstrate electromechanically excited Brillouin scattering in integrated optomechanical waveguides made of piezoelectric material aluminum nitride (AlN). Acoustic phonons of 16 GHz in frequency are excited with nanofabricated electromechanical transducers to scatter counterpropagating photons in the waveguide into a single anti-Stokes sideband. We show that phase-matching conditions of Brillouin scattering can be tuned by varying both the optical wavelength and the acoustic frequency to realize tunable single-sideband modulation. Combining Brillouin scattering photonics with nanoelectromechanical systems, our approach provides an efficient interface between microwave and optical photons that will be important for microwave photonics and potentially quantum transduction.

Journal ArticleDOI
TL;DR: It is demonstrated that alpine plants belonging to the Saxifraga genus can tailor light scattering channels and utilize multipole interference effect to improve light collection efficiency via producing CaCO3 polycrystal nanoparticles on the margins of their leaves, paving the way for a bioinspired strategy of efficient light collection by self-assembled polycrystals CaCO4 nanoparticles via tailoring light propagation directly to the photosynthetic tissue with minimal losses to undesired scattering channels.
Abstract: Being the polymorphs of calcium carbonate (CaCO3), vaterite and calcite have attracted a great deal of attention as promising biomaterials for drug delivery and tissue engineering applications. Furthermore, they are important biogenic minerals, enabling living organisms to reach specific functions. In nature, vaterite and calcite monocrystals typically form self-assembled polycrystal micro- and nanoparticles, also referred to as spherulites. Here, we demonstrate that alpine plants belonging to the Saxifraga genus can tailor light scattering channels and utilize multipole interference effect to improve light collection efficiency via producing CaCO3 polycrystal nanoparticles on the margins of their leaves. To provide a clear physical background behind this concept, we study optical properties of artificially synthesized vaterite nanospherulites and reveal the phenomenon of directional light scattering. Dark-field spectroscopy measurements are supported by a comprehensive numerical analysis, accounting for the complex microstructure of particles. We demonstrate the appearance of generalized Kerker condition, where several higher order multipoles interfere constructively in the forward direction, governing the interaction phenomenon. As a result, highly directive forward light scattering from vaterite nanospherulites is observed in the entire visible range. Furthermore, ex vivo studies of microstructure and optical properties of leaves for the alpine plants Saxifraga "Southside Seedling" and Saxifraga Paniculata Ria are performed and underline the importance of the Kerker effect for these living organisms. Our results pave the way for a bioinspired strategy of efficient light collection by self-assembled polycrystal CaCO3 nanoparticles via tailoring light propagation directly to the photosynthetic tissue with minimal losses to undesired scattering channels.

Journal ArticleDOI
TL;DR: This study investigated whether the transport mean free path of emitted photons within disordered scatterers composed of ZnO nanowires is tunable by a curvature bending applied to the flexible polyethylene terephthalate (PET) substrate underneath, thereby creating a unique light source that can be operated above and below the lasing threshold for desirable spectral emissions.
Abstract: The application of random lasers has been restricted due to the absence of a well-defined resonant cavity, as the lasing action mainly depends on multiple light scattering induced by intrinsic disorders of the laser medium to establish the required optical feedback that hence increases the difficulty in efficiently tuning and modulating random lasing emissions. This study investigated whether the transport mean free path of emitted photons within disordered scatterers composed of ZnO nanowires is tunable by a curvature bending applied to the flexible polyethylene terephthalate (PET) substrate underneath, thereby creating a unique light source that can be operated above and below the lasing threshold for desirable spectral emissions. For the first time, the developed curvature-tunable random laser is implemented for in vivo biological imaging with much lower speckle noise compared to the non-lasing situation through simple mechanical bending, which is of great potential for studying the fast-moving physiological phenomenon such as blood flow patterns in mouse ear skin. It is expected that the experimental demonstration of the curvature-tunable random laser can provide a new route to develop disorder-based optoelectronic devices.

Journal ArticleDOI
TL;DR: Dark muscles had a longer lattice spacing, shorter sarcomeres and wider muscle fibre diameters compared to lighter colour groups, indicating that the transverse spacing of muscle fibres that occurs post-mortem, with pH decline, is central to light scattering development.

Journal ArticleDOI
TL;DR: In this paper, phase change materials (PCMs) can switch between different crystalline states as a function of an external bias, offering a pronounced change of their dielectric function.
Abstract: Phase-change materials (PCMs) can switch between different crystalline states as a function of an external bias, offering a pronounced change of their dielectric function. To take full advantage of...

Journal ArticleDOI
TL;DR: Light scattering by a silicon cubic nanoparticle embedded in lossless media, supporting optical resonant response is reported on, showing that significant changes in the scattering process are governed by the electro-magnetic multipole resonances, which experience spectral red-shift and broadening over the whole visible and near-infrared spectra as the indices of media increase.
Abstract: Dielectric photonics platform provides unique possibilities to control light scattering via utilizing high-index dielectric nanoantennas with peculiar optical signatures. Despite the intensively growing field of all-dielectric nanophotonics, it is still unclear how surrounding media affect scattering properties of a nanoantenna with complex multipole response. Here, we report on light scattering by a silicon cubic nanoparticle embedded in lossless media, supporting optical resonant response. We show that significant changes in the scattering process are governed by the electro-magnetic multipole resonances, which experience spectral red-shift and broadening over the whole visible and near-infrared spectra as the indices of media increase. Most interestingly, the considered nanoantenna exhibits the broadband forward scattering in the visible and near-infrared spectral ranges due to the Kerker-effect in high-index media. The revealed effect of broadband forward scattering is essential for highly demanding applications in which the influence of the media is crucial such as health-care, e.g., sensing, treatment efficiency monitoring, and diagnostics. In addition, the insights from this study are expected to pave the way toward engineering the nanophotonic systems including but not limited to Huygens-metasurfaces in media within a single framework.

Journal ArticleDOI
TL;DR: In this article, a complementary coupling of nitrogen-doped carbon quantum dot (N-CQDs) based waveguide with PDLC smart window device that selectively harvests the ultraviolet light (UV) and near UV light for electrical energy generation without competing for the visible and near-infrared light.

Posted Content
TL;DR: A new 3D RI microscopy technique is implemented that utilizes a computational multi-slice beam propagation method to invert the optical scattering process and reconstruct high-resolution (NA>1.0)3D RI distributions of multiple-scattering samples.
Abstract: Optical diffraction tomography (ODT) reconstructs a samples volumetric refractive index (RI) to create high-contrast, quantitative 3D visualizations of biological samples. However, standard implementations of ODT use interferometric systems, and so are sensitive to phase instabilities, complex mechanical design, and coherent noise. Furthermore, their reconstruction framework is typically limited to weakly-scattering samples, and thus excludes a whole class of multiple-scattering samples. Here, we implement a new 3D RI microscopy technique that utilizes a computational multi-slice beam propagation method to invert the optical scattering process and reconstruct high-resolution (NA>1.0) 3D RI distributions of multiple-scattering samples. The method acquires intensity-only measurements from different illumination angles, and then solves a non-linear optimization problem to recover the sample 3D RI distribution. We experimentally demonstrate reconstruction of samples with varying amounts of multiple scattering: a 3T3 fibroblast cell, a cluster of C. elegans embryos, and a whole C. elegans worm, with lateral and axial resolutions of 250 nm and 900 nm, respectively.

Journal ArticleDOI
TL;DR: The differences in directional scattering between strains shows that directionality decreases with an increase in melanin concentrations in RPE, suggesting increasing contribution of Mie scattering by melanosomes.
Abstract: Optical coherence tomography (OCT) is a powerful tool in ophthalmology that provides in vivo morphology of the retinal layers and their light scattering properties. The directional (angular) reflectivity of the retinal layers was investigated with focus on the scattering from retinal pigment epithelium (RPE). The directional scattering of the RPE was studied in three mice strains with three distinct melanin concentrations: albino (BALB/c), agouti (129S1/SvlmJ), and strongly pigmented (C57BL/6J). The backscattering signal strength was measured with a directional OCT system in which the pupil entry position of the narrow OCT beam can be varied across the dilated pupil of the eyes of the mice. The directional reflectivity of other retinal melanin-free layers, including the internal and external limiting membranes, and Bruch's membrane (albinos) were also measured and compared between the strains. The intensity of light backscattered from these layers was found highly sensitive to the angle of illumination, whereas the inner/outer segment (IS/OS) junctions showed a reduced sensitivity. The reflections from the RPE are largely insensitive in highly pigmented mice. The differences in directional scattering between strains shows that directionality decreases with an increase in melanin concentrations in RPE, suggesting increasing contribution of Mie scattering by melanosomes.

Journal ArticleDOI
TL;DR: Coherent optical control within or through scattering media via wavefront shaping has seen broad applications since its invention around 2007.
Abstract: Coherent optical control within or through scattering media via wavefront shaping has seen broad applications since its invention around 2007. Wavefront shaping is aimed at overcoming the strong sc...

Posted Content
TL;DR: In this article, a unified description of such exotic scattering phenomena and the origin of all these effects can be traced back to the properties of poles and zeros of the underlying scattering matrix.
Abstract: Scattering of electromagnetic waves lies at the heart of most experimental techniques over nearly the entire electromagnetic spectrum, ranging from radio waves to optics and X-rays Hence, deep insight into the basics of scattering theory and understanding the peculiar features of electromagnetic scattering is necessary for the correct interpretation of experimental data and an understanding of the underlying physics Recently, a broad spectrum of exceptional scattering phenomena attainable in suitably engineered structures has been predicted and demonstrated Examples include bound states in the continuum, exceptional points in PT-symmetrical non-Hermitian systems, coherent perfect absorption, virtual perfect absorption, nontrivial lasing, non-radiating sources, and others In this paper, we establish a unified description of such exotic scattering phenomena and show that the origin of all these effects can be traced back to the properties of poles and zeros of the underlying scattering matrix We provide insights on how managing these special points in the complex frequency plane provides a powerful approach to tailor unusual scattering regimes

Journal ArticleDOI
TL;DR: This work demonstrates non-invasive super-resolution imaging through scattering media based on a stochastic optical scattering localization imaging (SOSLI) technique that utilizes the speckle correlation property of scattering media to retrieve an image with a 100-nm resolution, an eight-fold enhancement compared to the diffraction limit.
Abstract: Super-resolution imaging with advanced optical systems has been revolutionizing technical analysis in various fields from biological to physical sciences. However, many objects are hidden by strongly scattering media such as rough wall corners or biological tissues that scramble light paths, create speckle patterns and hinder object's visualization, let alone super-resolution imaging. Here, we realize a method to do non-invasive super-resolution imaging through scattering media based on stochastic optical scattering localization imaging (SOSLI) technique. Simply by capturing multiple speckle patterns of photo-switchable emitters in our demonstration, the stochastic approach utilizes the speckle correlation properties of scattering media to retrieve an image with more than five-fold resolution enhancement compared to the diffraction limit, while posing no fundamental limit in achieving higher spatial resolution. More importantly, we demonstrate our SOSLI to do non-invasive super-resolution imaging through not only optical diffusers, i.e. static scattering media, but also biological tissues, i.e. dynamic scattering media with decorrelation of up to 80%. Our approach paves the way to non-invasively visualize various samples behind scattering media at unprecedented levels of detail.

Journal ArticleDOI
TL;DR: It was found that deep learning significantly improves the accuracy over conventional detection: the enhancement in the accuracy was shown to be significantly higher by almost six times, suggesting thatDeep learning can be used to find scattering objects effectively in the noisy environment.
Abstract: A deep learning approach has been taken to improve detection characteristics of surface plasmon microscopy (SPM) of light scattering. Deep learning based on the convolutional neural network algorithm was used to estimate the effect of scattering parameters, mainly the number of scatterers. The improvement was assessed on a quantitative basis by applying the approach to SPM images formed by coherent interference of scatterers. It was found that deep learning significantly improves the accuracy over conventional detection: the enhancement in the accuracy was shown to be significantly higher by almost 6 times and useful for scattering by polydisperse mixtures. This suggests that deep learning can be used to find scattering objects effectively in the noisy environment. Furthermore, deep learning can be extended directly to label-free molecular detection assays and provide considerably improved detection in imaging and microscopy techniques.