Topic
Likelihood function
About: Likelihood function is a(n) research topic. Over the lifetime, 10391 publication(s) have been published within this topic receiving 517378 citation(s). The topic is also known as: likelihood functions.
...read more
Papers
More
Abstract: The history of the development of statistical hypothesis testing in time series analysis is reviewed briefly and it is pointed out that the hypothesis testing procedure is not adequately defined as the procedure for statistical model identification. The classical maximum likelihood estimation procedure is reviewed and a new estimate minimum information theoretical criterion (AIC) estimate (MAICE) which is designed for the purpose of statistical identification is introduced. When there are several competing models the MAICE is defined by the model and the maximum likelihood estimates of the parameters which give the minimum of AIC defined by AIC = (-2)log-(maximum likelihood) + 2(number of independently adjusted parameters within the model). MAICE provides a versatile procedure for statistical model identification which is free from the ambiguities inherent in the application of conventional hypothesis testing procedure. The practical utility of MAICE in time series analysis is demonstrated with some numerical examples.
...read more
Topics: Likelihood function (61%), Akaike information criterion (61%), Statistical model (60%) ...read more
42,619 Citations
01 Jan 1973-
Abstract: In this paper it is shown that the classical maximum likelihood principle can be considered to be a method of asymptotic realization of an optimum estimate with respect to a very general information theoretic criterion. This observation shows an extension of the principle to provide answers to many practical problems of statistical model fitting.
...read more
Topics: Likelihood principle (64%), Likelihood function (59%), Bayesian information criterion (58%) ...read more
15,032 Citations
Abstract: This paper reviews the mathematical basis of maximum likelihood The likelihood function for macromolecular structures is extended to include prior phase information and experimental standard uncertainties The assumption that different parts of a structure might have different errors is considered A method for estimating σA using `free' reflections is described and its effects analysed The derived equations have been implemented in the program REFMAC This has been tested on several proteins at different stages of refinement (bacterial α-amylase, cytochrome c′, cross-linked insulin and oligopeptide binding protein) The results derived using the maximum-likelihood residual are consistently better than those obtained from least-squares refinement
...read more
Topics: Oligopeptide binding (56%), Likelihood function (56%)
14,122 Citations
Abstract: PhyML is a phylogeny software based on the maximum-likelihood principle. Early PhyML versions used a fast algorithm performing nearest neighbor interchanges to improve a reasonable starting tree topology. Since the original publication (Guindon S., Gascuel O. 2003. A simple, fast and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst. Biol. 52:696-704), PhyML has been widely used (>2500 citations in ISI Web of Science) because of its simplicity and a fair compromise between accuracy and speed. In the meantime, research around PhyML has continued, and this article describes the new algorithms and methods implemented in the program. First, we introduce a new algorithm to search the tree space with user-defined intensity using subtree pruning and regrafting topological moves. The parsimony criterion is used here to filter out the least promising topology modifications with respect to the likelihood function. The analysis of a large collection of real nucleotide and amino acid data sets of various sizes demonstrates the good performance of this method. Second, we describe a new test to assess the support of the data for internal branches of a phylogeny. This approach extends the recently proposed approximate likelihood-ratio test and relies on a nonparametric, Shimodaira-Hasegawa-like procedure. A detailed analysis of real alignments sheds light on the links between this new approach and the more classical nonparametric bootstrap method. Overall, our tests show that the last version (3.0) of PhyML is fast, accurate, stable, and ready to use. A Web server and binary files are available from http://www.atgc-montpellier.fr/phyml/.
...read more
Topics: Likelihood function (51%)
12,048 Citations
Abstract: [Read at a RESEARCH METHODS MEETING of the SOCIETY, April 8th, 1964, Professor D. V. LINDLEY in the Chair] SUMMARY In the analysis of data it is often assumed that observations Yl, Y2, *-, Yn are independently normally distributed with constant variance and with expectations specified by a model linear in a set of parameters 0. In this paper we make the less restrictive assumption that such a normal, homoscedastic, linear model is appropriate after some suitable transformation has been applied to the y's. Inferences about the transformation and about the parameters of the linear model are made by computing the likelihood function and the relevant posterior distribution. The contributions of normality, homoscedasticity and additivity to the transformation are separated. The relation of the present methods to earlier procedures for finding transformations is discussed. The methods are illustrated with examples.
...read more
Topics: Variance-stabilizing transformation (58%), Homoscedasticity (57%), Transformation (function) (54%) ...read more
11,432 Citations