Topic

# Likelihood-ratio test

About: Likelihood-ratio test is a research topic. Over the lifetime, 7148 publications have been published within this topic receiving 293303 citations. The topic is also known as: LR test.

##### Papers published on a yearly basis

##### Papers

More filters

••

TL;DR: In this paper, the authors consider a nonstationary vector autoregressive process which is integrated of order 1, and generated by i.i.d. Gaussian errors, and derive the maximum likelihood estimator of the space of cointegration vectors and the likelihood ratio test of the hypothesis that it has a given number of dimensions.

Abstract: We consider a nonstationary vector autoregressive process which is integrated of order 1, and generated by i.i.d. Gaussian errors. We then derive the maximum likelihood estimator of the space of cointegration vectors and the likelihood ratio test of the hypothesis that it has a given number of dimensions. Further we test linear hypotheses about the cointegration vectors. The asymptotic distribution of these test statistics are found and the first is described by a natural multivariate version of the usual test for unit root in an autoregressive process, and the other is a x2 test. 1. Introduction The idea of using cointegration vectors in the study of nonstationary time series comes from the work of Granger (1981), Granger and Weiss (1983), Granger and Engle (1985), and Engle and Granger (1987). The connection with error correcting models has been investigated by a number of authors; see Davidson (1986), Stock (1987), and Johansen (1988) among others. Granger and Engle (1987) suggest estimating the cointegration relations using regression, and these estimators have been investigated by Stock (1987), Phillips (1985), Phillips and Durlauf (1986), Phillips and Park (1986a, b, 1987), Phillips and Ouliaris (1986,1987), Stock and Watson (1987), and Sims, Stock and Watson (1986). The purpose of this paper is to derive maximum likelihood estimators of the cointegration vectors for an autoregressive process with independent Gaussian errors, and to derive a likelihood ratio test for the hypothesis that there is a given number of these. A similar approach has been taken by Ahn and Reinsel (1987). This program will not only give good estimates and test statistics in the Gaussian case, but will also yield estimators and tests, the properties of which can be investigated under various other assumptions about the underlying data generating process. The reason for expecting the estimators to behave better *The simulations were carefully performed by Marc Andersen with the support of the Danish Social Science Research Council. The author is very grateful to the referee whose critique of the first version greatly helped improve the presentation.

16,189 citations

••

01 Jan 1973

TL;DR: In this paper, it is shown that the classical maximum likelihood principle can be considered to be a method of asymptotic realization of an optimum estimate with respect to a very general information theoretic criterion.

Abstract: In this paper it is shown that the classical maximum likelihood principle can be considered to be a method of asymptotic realization of an optimum estimate with respect to a very general information theoretic criterion. This observation shows an extension of the principle to provide answers to many practical problems of statistical model fitting.

15,424 citations

••

TL;DR: In this article, the authors derived the likelihood analysis of vector autoregressive models allowing for cointegration and showed that the asymptotic distribution of the maximum likelihood estimator of the cointegrating relations can be found by reduced rank regression and derives the likelihood ratio test of structural hypotheses about these relations.

Abstract: This paper contains the likelihood analysis of vector autoregressive models allowing for cointegration. The author derives the likelihood ratio test for cointegrating rank and finds it asymptotic distribution. He shows that the maximum likelihood estimator of the cointegrating relations can be found by reduced rank regression and derives the likelihood ratio test of structural hypotheses about these relations. The author shows that the asymptotic distribution of the maximum likelihood estimator is mixed Gaussian, allowing inference for hypotheses on the cointegrating relation to be conducted using the Chi(" squared") distribution. Copyright 1991 by The Econometric Society.

9,112 citations

••

TL;DR: This work proposes a principled statistical framework for discerning and quantifying power-law behavior in empirical data by combining maximum-likelihood fitting methods with goodness-of-fit tests based on the Kolmogorov-Smirnov (KS) statistic and likelihood ratios.

Abstract: Power-law distributions occur in many situations of scientific interest and have significant consequences for our understanding of natural and man-made phenomena. Unfortunately, the detection and characterization of power laws is complicated by the large fluctuations that occur in the tail of the distribution—the part of the distribution representing large but rare events—and by the difficulty of identifying the range over which power-law behavior holds. Commonly used methods for analyzing power-law data, such as least-squares fitting, can produce substantially inaccurate estimates of parameters for power-law distributions, and even in cases where such methods return accurate answers they are still unsatisfactory because they give no indication of whether the data obey a power law at all. Here we present a principled statistical framework for discerning and quantifying power-law behavior in empirical data. Our approach combines maximum-likelihood fitting methods with goodness-of-fit tests based on the Kolmogorov-Smirnov (KS) statistic and likelihood ratios. We evaluate the effectiveness of the approach with tests on synthetic data and give critical comparisons to previous approaches. We also apply the proposed methods to twenty-four real-world data sets from a range of different disciplines, each of which has been conjectured to follow a power-law distribution. In some cases we find these conjectures to be consistent with the data, while in others the power law is ruled out.

8,753 citations

••

TL;DR: Whereas the Bayesian Information Criterion performed the best of the ICs, the bootstrap likelihood ratio test proved to be a very consistent indicator of classes across all of the models considered.

Abstract: Mixture modeling is a widely applied data analysis technique used to identify unobserved heterogeneity in a population. Despite mixture models' usefulness in practice, one unresolved issue in the application of mixture models is that there is not one commonly accepted statistical indicator for deciding on the number of classes in a study population. This article presents the results of a simulation study that examines the performance of likelihood-based tests and the traditionally used Information Criterion (ICs) used for determining the number of classes in mixture modeling. We look at the performance of these tests and indexes for 3 types of mixture models: latent class analysis (LCA), a factor mixture model (FMA), and a growth mixture models (GMM). We evaluate the ability of the tests and indexes to correctly identify the number of classes at three different sample sizes (n = 200, 500, 1,000). Whereas the Bayesian Information Criterion performed the best of the ICs, the bootstrap likelihood ratio test ...

7,716 citations