scispace - formally typeset
Search or ask a question
Topic

Limit state design

About: Limit state design is a research topic. Over the lifetime, 4433 publications have been published within this topic receiving 60920 citations.


Papers
More filters
01 Jan 1993
TL;DR: In this article, the authors present guidance on prestressed concrete design in normal weight concrete where prestress is by fully bonded tendons, advice is given on the required numbers of tendons and the prestressing force and the limit states.
Abstract: This document contains only that material from Eurocode 2 (EC2) necessary for the design of everyday reinforced and prestressed concrete structures. Other material not in EC2, including bending moment coefficients for beams and slabs and design charts are included in an appendix, so that designers have all the information they would expect to find in a British code. Recommendations are given for concrete cover and durability, and designs for the ultimate limit state in bending and axial load, shear resistance, and torsion is examined. The control of cracking and deflection is discussed. The guidance on prestressed concrete design is limited to structures in normal weight concrete where prestress is by fully bonded tendons. Advice is given on the required numbers of tendons, the prestressing force and the limit states. Anchorages and anchorage zones are considered.

2,393 citations

Journal ArticleDOI
TL;DR: In this paper, an algorithm for the calculation of structural reliability under combined loading is formulated, in which loads or any other actions upon structures are modelled as independent random sequences and the relevant limit state criterion is pointwise approximated by a tangent hyperplane.

1,988 citations

Book
01 Jan 1993
Abstract: Inevitably, reading is one of the requirements to be undergone. To improve the performance and quality, someone needs to have something new every day. It will suggest you to have more inspirations, then. However, the needs of inspirations will make you searching for some sources. Even from the other people experience, internet, and many books. Books and internet are the recommended media to help you improving your quality and performance.

1,578 citations

Book
14 Jan 2000
TL;DR: This book discusses the concepts of limit states and limit state functions, and presents methodologies for calculating reliability indices and calibrating partial safety factors, and supplies information on the probability distributions and parameters used to characterize both applied loads and member resistances.
Abstract: This book enables both students and practicing engineers to appreciate how to value and handle reliability as an important dimension of structural design. The book discusses the concepts of limit states and limit state functions, and presents methodologies for calculating reliability indices and calibrating partial safety factors. It also supplies information on the probability distributions and parameters used to characterize both applied loads and member resistances. This book contains more discussions of United States (US) and international codes and the issues underlying their development. There is a significant discussion on Monte Carlo simulation. The books' emphasis is on the practical applications of structural reliability theory rather than the theory itself. Consequently, probability theory is treated as a tool, and enough is given to show the novice reader how to calculate reliability. Some background in structural engineering and structural mechanics is assumed.

944 citations

Journal ArticleDOI
TL;DR: This paper develops an efficient reliability analysis method that accurately characterizes the limit state throughout the random variable space and is both accurate for any arbitrarily shaped limit state and computationally efficient even for expensive response functions.
Abstract: Many engineering applications are characterized by implicit response functions that are expensive to evaluate and sometimes nonlinear in their behavior, making reliability analysis difficult. This paper develops an efficient reliability analysis method that accurately characterizes the limit state throughout the random variable space. The method begins with a Gaussian process model built from a very small number of samples, and then adaptively chooses where to generate subsequent samples to ensure that the model is accurate in the vicinity of the limit state. The resulting Gaussian process model is then sampled using multimodal adaptive importance sampling to calculate the probability of exceeding (or failing to exceed) the response level of interest. By locating multiple points on or near the limit state, more complex and nonlinear limit states can be modeled, leading to more accurate probability integration. By concentrating the samples in the area where accuracy is important (i.e., in the vicinity of the limit state), only a small number of true function evaluations are required to build a quality surrogate model. The resulting method is both accurate for any arbitrarily shaped limit state and computationally efficient even for expensive response functions. This new method is applied to a collection of example problems including one that analyzes the reliability of a microelectromechanical system device that current available methods have difficulty solving either accurately or efficiently.

804 citations


Network Information
Related Topics (5)
Buckling
30.3K papers, 465.8K citations
88% related
Fracture mechanics
58.3K papers, 1.3M citations
81% related
Constitutive equation
24.9K papers, 665.1K citations
81% related
Stress intensity factor
28.6K papers, 566K citations
81% related
Compressive strength
64.4K papers, 1M citations
81% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023128
2022211
2021195
2020194
2019233
2018192