Topic

# Linear code

About: Linear code is a research topic. Over the lifetime, 16333 publications have been published within this topic receiving 448647 citations.

##### Papers published on a yearly basis

##### Papers

More filters

•

01 Jan 1977

TL;DR: This book presents an introduction to BCH Codes and Finite Fields, and methods for Combining Codes, and discusses self-dual Codes and Invariant Theory, as well as nonlinear Codes, Hadamard Matrices, Designs and the Golay Code.

Abstract: Linear Codes. Nonlinear Codes, Hadamard Matrices, Designs and the Golay Code. An Introduction to BCH Codes and Finite Fields. Finite Fields. Dual Codes and Their Weight Distribution. Codes, Designs and Perfect Codes. Cyclic Codes. Cyclic Codes: Idempotents and Mattson-Solomon Polynomials. BCH Codes. Reed-Solomon and Justesen Codes. MDS Codes. Alternant, Goppa and Other Generalized BCH Codes. Reed-Muller Codes. First-Order Reed-Muller Codes. Second-Order Reed-Muller, Kerdock and Preparata Codes. Quadratic-Residue Codes. Bounds on the Size of a Code. Methods for Combining Codes. Self-dual Codes and Invariant Theory. The Golay Codes. Association Schemes. Appendix A. Tables of the Best Codes Known. Appendix B. Finite Geometries. Bibliography. Index.

10,083 citations

••

AT&T

^{1}TL;DR: A generalization of orthogonal designs is shown to provide space-time block codes for both real and complex constellations for any number of transmit antennas and it is shown that many of the codes presented here are optimal in this sense.

Abstract: We introduce space-time block coding, a new paradigm for communication over Rayleigh fading channels using multiple transmit antennas. Data is encoded using a space-time block code and the encoded data is split into n streams which are simultaneously transmitted using n transmit antennas. The received signal at each receive antenna is a linear superposition of the n transmitted signals perturbed by noise. Maximum-likelihood decoding is achieved in a simple way through decoupling of the signals transmitted from different antennas rather than joint detection. This uses the orthogonal structure of the space-time block code and gives a maximum-likelihood decoding algorithm which is based only on linear processing at the receiver. Space-time block codes are designed to achieve the maximum diversity order for a given number of transmit and receive antennas subject to the constraint of having a simple decoding algorithm. The classical mathematical framework of orthogonal designs is applied to construct space-time block codes. It is shown that space-time block codes constructed in this way only exist for few sporadic values of n. Subsequently, a generalization of orthogonal designs is shown to provide space-time block codes for both real and complex constellations for any number of transmit antennas. These codes achieve the maximum possible transmission rate for any number of transmit antennas using any arbitrary real constellation such as PAM. For an arbitrary complex constellation such as PSK and QAM, space-time block codes are designed that achieve 1/2 of the maximum possible transmission rate for any number of transmit antennas. For the specific cases of two, three, and four transmit antennas, space-time block codes are designed that achieve, respectively, all, 3/4, and 3/4 of maximum possible transmission rate using arbitrary complex constellations. The best tradeoff between the decoding delay and the number of transmit antennas is also computed and it is shown that many of the codes presented here are optimal in this sense as well.

7,348 citations

••

TL;DR: In this paper, the authors consider the design of channel codes for improving the data rate and/or the reliability of communications over fading channels using multiple transmit antennas and derive performance criteria for designing such codes under the assumption that the fading is slow and frequency nonselective.

Abstract: We consider the design of channel codes for improving the data rate and/or the reliability of communications over fading channels using multiple transmit antennas. Data is encoded by a channel code and the encoded data is split into n streams that are simultaneously transmitted using n transmit antennas. The received signal at each receive antenna is a linear superposition of the n transmitted signals perturbed by noise. We derive performance criteria for designing such codes under the assumption that the fading is slow and frequency nonselective. Performance is shown to be determined by matrices constructed from pairs of distinct code sequences. The minimum rank among these matrices quantifies the diversity gain, while the minimum determinant of these matrices quantifies the coding gain. The results are then extended to fast fading channels. The design criteria are used to design trellis codes for high data rate wireless communication. The encoding/decoding complexity of these codes is comparable to trellis codes employed in practice over Gaussian channels. The codes constructed here provide the best tradeoff between data rate, diversity advantage, and trellis complexity. Simulation results are provided for 4 and 8 PSK signal sets with data rates of 2 and 3 bits/symbol, demonstrating excellent performance that is within 2-3 dB of the outage capacity for these channels using only 64 state encoders.

7,105 citations

••

TL;DR: The upper bound is obtained for a specific probabilistic nonsequential decoding algorithm which is shown to be asymptotically optimum for rates above R_{0} and whose performance bears certain similarities to that of sequential decoding algorithms.

Abstract: The probability of error in decoding an optimal convolutional code transmitted over a memoryless channel is bounded from above and below as a function of the constraint length of the code. For all but pathological channels the bounds are asymptotically (exponentially) tight for rates above R_{0} , the computational cutoff rate of sequential decoding. As a function of constraint length the performance of optimal convolutional codes is shown to be superior to that of block codes of the same length, the relative improvement increasing with rate. The upper bound is obtained for a specific probabilistic nonsequential decoding algorithm which is shown to be asymptotically optimum for rates above R_{0} and whose performance bears certain similarities to that of sequential decoding algorithms.

6,804 citations

•

6,667 citations