scispace - formally typeset
Search or ask a question

Showing papers on "Linear discriminant analysis published in 2014"


Journal ArticleDOI
TL;DR: The random forest is clearly the best family of classifiers (3 out of 5 bests classifiers are RF), followed by SVM (4 classifiers in the top-10), neural networks and boosting ensembles (5 and 3 members in theTop-20, respectively).
Abstract: We evaluate 179 classifiers arising from 17 families (discriminant analysis, Bayesian, neural networks, support vector machines, decision trees, rule-based classifiers, boosting, bagging, stacking, random forests and other ensembles, generalized linear models, nearest-neighbors, partial least squares and principal component regression, logistic and multinomial regression, multiple adaptive regression splines and other methods), implemented in Weka, R (with and without the caret package), C and Matlab, including all the relevant classifiers available today. We use 121 data sets, which represent the whole UCI data base (excluding the large-scale problems) and other own real problems, in order to achieve significant conclusions about the classifier behavior, not dependent on the data set collection. The classifiers most likely to be the bests are the random forest (RF) versions, the best of which (implemented in R and accessed via caret) achieves 94.1% of the maximum accuracy overcoming 90% in the 84.3% of the data sets. However, the difference is not statistically significant with the second best, the SVM with Gaussian kernel implemented in C using LibSVM, which achieves 92.3% of the maximum accuracy. A few models are clearly better than the remaining ones: random forest, SVM with Gaussian and polynomial kernels, extreme learning machine with Gaussian kernel, C5.0 and avNNet (a committee of multi-layer perceptrons implemented in R with the caret package). The random forest is clearly the best family of classifiers (3 out of 5 bests classifiers are RF), followed by SVM (4 classifiers in the top-10), neural networks and boosting ensembles (5 and 3 members in the top-20, respectively).

2,616 citations


Journal ArticleDOI
TL;DR: A novel maximum neighborhood margin discriminant projection technique for dimensionality reduction of high-dimensional data that cannot only detect the true intrinsic manifold structure of the data but also strengthen the pattern discrimination among different classes.
Abstract: We develop a novel maximum neighborhood margin discriminant projection (MNMDP) technique for dimensionality reduction of high-dimensional data. It utilizes both the local information and class information to model the intraclass and interclass neighborhood scatters. By maximizing the margin between intraclass and interclass neighborhoods of all points, MNMDP cannot only detect the true intrinsic manifold structure of the data but also strengthen the pattern discrimination among different classes. To verify the classification performance of the proposed MNMDP, it is applied to the PolyU HRF and FKP databases, the AR face database, and the UCI Musk database, in comparison with the competing methods such as PCA and LDA. The experimental results demonstrate the effectiveness of our MNMDP in pattern classification.

771 citations


Journal ArticleDOI
TL;DR: A linear-time algorithm applicable to a large class of trait evolution models, for efficient likelihood calculations and parameter inference on very large trees, which solves the traditional computational burden associated with two key terms, namely the determinant of the phylogenetic covariance matrix V and quadratic products involving the inverse of V.
Abstract: We developed a linear-time algorithm applicable to a large class of trait evolution models, for efficient likelihood calculations and parameter inference on very large trees. Our algorithm solves the traditional computational burden associated with two key terms, namely the determinant of the phylogenetic covariance matrix V and quadratic products involving the inverse of V. Applications include Gaussian models such as Brownian motion-derived models like Pagel's lambda, kappa, delta, and the early-burst model; Ornstein-Uhlenbeck models to account for natural selection with possibly varying selection parameters along the tree; as well as non-Gaussian models such as phylogenetic logistic regression, phylogenetic Poisson regression, and phylogenetic generalized linear mixed models. Outside of phylogenetic regression, our algorithm also applies to phylogenetic principal component analysis, phylogenetic discriminant analysis or phylogenetic prediction. The computational gain opens up new avenues for complex models or extensive resampling procedures on very large trees. We identify the class of models that our algorithm can handle as all models whose covariance matrix has a 3-point structure. We further show that this structure uniquely identifies a rooted tree whose branch lengths parametrize the trait covariance matrix, which acts as a similarity matrix. The new algorithm is implemented in the R package phylolm, including functions for phylogenetic linear regression and phylogenetic logistic regression.

728 citations


Book ChapterDOI
06 Sep 2014
TL;DR: Four alternatives for re-ID classification are proposed: regularized Pairwise Constrained Component Analysis, kernel Local Fisher Discriminant Analysis, Marginal Fisher Analysis and a ranking ensemble voting scheme, used in conjunction with different sizes of sets of histogram-based features and linear, χ 2 and RBF-χ 2 kernels.
Abstract: Re-identification of individuals across camera networks with limited or no overlapping fields of view remains challenging in spite of significant research efforts. In this paper, we propose the use, and extensively evaluate the performance, of four alternatives for re-ID classification: regularized Pairwise Constrained Component Analysis, kernel Local Fisher Discriminant Analysis, Marginal Fisher Analysis and a ranking ensemble voting scheme, used in conjunction with different sizes of sets of histogram-based features and linear, χ 2 and RBF-χ 2 kernels. Comparisons against the state-of-art show significant improvements in performance measured both in terms of Cumulative Match Characteristic curves (CMC) and Proportion of Uncertainty Removed (PUR) scores on the challenging VIPeR, iLIDS, CAVIAR and 3DPeS datasets.

673 citations


Journal ArticleDOI
TL;DR: Partial least squares discriminant analysis (PLS-DA) has been available for nearly 20 years yet is poorly understood by most users as mentioned in this paper, however, despite these limitations, PLS-DA can provide good insight into the causes of discrimination via weights and loadings, which gives it a unique role in exploratory data analysis, for example in metabolomics via visualization of significant variables such as metabolites or spectroscopic peaks.
Abstract: Partial least squares discriminant analysis (PLS-DA) has been available for nearly 20 years yet is poorly understood by most users. By simple examples, it is shown graphically and algebraically that for two equal class sizes, PLS-DA using one partial least squares (PLS) component provides equivalent classification results to Euclidean distance to centroids, and by using all nonzero components to linear discriminant analysis. Extensions where there are unequal class sizes and more than two classes are discussed including common pitfalls and dilemmas. Finally, the problems of overfitting and PLS scores plots are discussed. It is concluded that for classification purposes, PLS-DA has no significant advantages over traditional procedures and is an algorithm full of dangers. It should not be viewed as a single integrated method but as step in a full classification procedure. However, despite these limitations, PLS-DA can provide good insight into the causes of discrimination via weights and loadings, which gives it a unique role in exploratory data analysis, for example in metabolomics via visualisation of significant variables such as metabolites or spectroscopic peaks. Copyright © 2014 John Wiley & Sons, Ltd.

578 citations


Journal ArticleDOI
TL;DR: Applications of the t test, analysis of variance, principal component analysis and partial least squares discriminant analysis will be shown on both real and simulated metabolomics data examples to provide an overview on fundamental aspects of univariate and multivariate methods.
Abstract: Metabolomics experiments usually result in a large quantity of data. Univariate and multivariate analysis techniques are routinely used to extract relevant information from the data with the aim of providing biological knowledge on the problem studied. Despite the fact that statistical tools like the t test, analysis of variance, principal component analysis, and partial least squares discriminant analysis constitute the backbone of the statistical part of the vast majority of metabolomics papers, it seems that many basic but rather fundamental questions are still often asked, like: Why do the results of univariate and multivariate analyses differ? Why apply univariate methods if you have already applied a multivariate method? Why if I do not see something univariately I see something multivariately? In the present paper we address some aspects of univariate and multivariate analysis, with the scope of clarifying in simple terms the main differences between the two approaches. Applications of the t test, analysis of variance, principal component analysis and partial least squares discriminant analysis will be shown on both real and simulated metabolomics data examples to provide an overview on fundamental aspects of univariate and multivariate methods.

405 citations


Journal ArticleDOI
TL;DR: Comparisons with other conventional methods, such as principal component analysis, local preserving projection, canonical correction analysis, maximum margin criterion, LDA, and marginal Fisher analysis, show the superiority of TR-LDA in fault diagnosis.
Abstract: Bearings are critical components in induction motors and brushless direct current motors. Bearing failure is the most common failure mode in these motors. By implementing health monitoring and fault diagnosis of bearings, unscheduled maintenance and economic losses caused by bearing failures can be avoided. This paper introduces trace ratio linear discriminant analysis (TR-LDA) to deal with high-dimensional non-Gaussian fault data for dimension reduction and fault classification. Motor bearing data with single-point faults and generalized-roughness faults are used to validate the effectiveness of the proposed method for fault diagnosis. Comparisons with other conventional methods, such as principal component analysis, local preserving projection, canonical correction analysis, maximum margin criterion, LDA, and marginal Fisher analysis, show the superiority of TR-LDA in fault diagnosis.

354 citations


Journal ArticleDOI
TL;DR: This paper proposes a method to learn a discriminant face descriptor (DFD) in a data-driven way and applies it to the heterogeneous (cross-modality) face recognition problem and learns DFD in a coupled way to reduce the gap between features of heterogeneous face images to improve the performance of this challenging problem.
Abstract: Local feature descriptor is an important module for face recognition and those like Gabor and local binary patterns (LBP) have proven effective face descriptors. Traditionally, the form of such local descriptors is predefined in a handcrafted way. In this paper, we propose a method to learn a discriminant face descriptor (DFD) in a data-driven way. The idea is to learn the most discriminant local features that minimize the difference of the features between images of the same person and maximize that between images from different people. In particular, we propose to enhance the discriminative ability of face representation in three aspects. First, the discriminant image filters are learned. Second, the optimal neighborhood sampling strategy is soft determined. Third, the dominant patterns are statistically constructed. Discriminative learning is incorporated to extract effective and robust features. We further apply the proposed method to the heterogeneous (cross-modality) face recognition problem and learn DFD in a coupled way (coupled DFD or C-DFD) to reduce the gap between features of heterogeneous face images to improve the performance of this challenging problem. Extensive experiments on FERET, CAS-PEAL-R1, LFW, and HFB face databases validate the effectiveness of the proposed DFD learning on both homogeneous and heterogeneous face recognition problems. The DFD improves POEM and LQP by about 4.5 percent on LFW database and the C-DFD enhances the heterogeneous face recognition performance of LBP by over 25 percent.

342 citations


Posted Content
TL;DR: Linear dimensionality reduction methods have been developed with a variety of names and motivations in many fields, and perhaps as a result the connections between all these methods have not been highlighted as discussed by the authors.
Abstract: Linear dimensionality reduction methods are a cornerstone of analyzing high dimensional data, due to their simple geometric interpretations and typically attractive computational properties. These methods capture many data features of interest, such as covariance, dynamical structure, correlation between data sets, input-output relationships, and margin between data classes. Methods have been developed with a variety of names and motivations in many fields, and perhaps as a result the connections between all these methods have not been highlighted. Here we survey methods from this disparate literature as optimization programs over matrix manifolds. We discuss principal component analysis, factor analysis, linear multidimensional scaling, Fisher's linear discriminant analysis, canonical correlations analysis, maximum autocorrelation factors, slow feature analysis, sufficient dimensionality reduction, undercomplete independent component analysis, linear regression, distance metric learning, and more. This optimization framework gives insight to some rarely discussed shortcomings of well-known methods, such as the suboptimality of certain eigenvector solutions. Modern techniques for optimization over matrix manifolds enable a generic linear dimensionality reduction solver, which accepts as input data and an objective to be optimized, and returns, as output, an optimal low-dimensional projection of the data. This simple optimization framework further allows straightforward generalizations and novel variants of classical methods, which we demonstrate here by creating an orthogonal-projection canonical correlations analysis. More broadly, this survey and generic solver suggest that linear dimensionality reduction can move toward becoming a blackbox, objective-agnostic numerical technology.

313 citations


Journal ArticleDOI
TL;DR: The aim in this paper is to improve the general understanding of how PCA and DA process and display differential sensing data, which should lead to the ability to better interpret the final results.
Abstract: Statistical analysis techniques such as principal component analysis (PCA) and discriminant analysis (DA) have become an integral part of data analysis for differential sensing. These multivariate statistical tools, while extremely versatile and useful, are sometimes used as “black boxes”. Our aim in this paper is to improve the general understanding of how PCA and DA process and display differential sensing data, which should lead to the ability to better interpret the final results. With various sets of model data, we explore several topics, such as how to choose an appropriate number of hosts for an array, selectivity compared to cross-reactivity, when to add hosts, how to obtain the best visually representative plot of a data set, and when arrays are not necessary. We also include items at the end of the paper as general recommendations which readers can follow when using PCA or DA in a practical application. Through this paper we hope to present these statistical analysis methods in a manner such that chemists gain further insight into approaches that optimize the discriminatory power of their arrays.

269 citations


Book ChapterDOI
01 Jan 2014
TL;DR: This chapter reviews the main ideas of Mahalanobis metric learning in general and gives a detailed study on different approaches for the task of single-shot person re-identification, also comparing to the state of the art.
Abstract: Recently, Mahalanobis metric learning has gained a considerable interest for single-shot person re-identification. The main idea is to build on an existing image representation and to learn a metric that reflects the visual camera-to-camera transitions, allowing for a more powerful classification. The goal of this chapter is twofold. We first review the main ideas of Mahalanobis metric learning in general and then give a detailed study on different approaches for the task of single-shot person re-identification, also comparing to the state of the art. In particular, for our experiments, we used Linear Discriminant Metric Learning (LDML), Information Theoretic Metric Learning (ITML), Large Margin Nearest Neighbor (LMNN), Large Margin Nearest Neighbor with Rejection (LMNN-R), Efficient Impostor-based Metric Learning (EIML), and KISSME. For our evaluations we used four different publicly available datasets (i.e., VIPeR, ETHZ, PRID 2011, and CAVIAR4REID). Additionally, we generated the new, more realistic PRID 450S dataset, where we also provide detailed segmentations. For the latter one, we also evaluated the influence of using well-segmented foreground and background regions. Finally, the corresponding results are presented and discussed.

Journal ArticleDOI
TL;DR: Experimental results revealed that Rotation Forest, especially with PCA transformation, could produce more accurate results than bagging, AdaBoost, and Random Forest, indicating that R rotation Forests are promising approaches for generating classifier ensemble of hyperspectral remote sensing.
Abstract: In this letter, an ensemble learning approach, Rotation Forest, has been applied to hyperspectral remote sensing image classification for the first time. The framework of Rotation Forest is to project the original data into a new feature space using transformation methods for each base classifier (decision tree), then the base classifier can train in different new spaces for the purpose of encouraging both individual accuracy and diversity within the ensemble simultaneously. Principal component analysis (PCA), maximum noise fraction, independent component analysis, and local Fisher discriminant analysis are introduced as feature transformation algorithms in the original Rotation Forest. The performance of Rotation Forest was evaluated based on several criteria: different data sets, sensitivity to the number of training samples, ensemble size and the number of features in a subset. Experimental results revealed that Rotation Forest, especially with PCA transformation, could produce more accurate results than bagging, AdaBoost, and Random Forest. They indicate that Rotation Forests are promising approaches for generating classifier ensemble of hyperspectral remote sensing.

Journal ArticleDOI
TL;DR: A new method is proposed, termed LDA-L1, by maximizing the ratio of the between- class dispersion to the within-class dispersion using the L1-norm rather than the L2-norm, which is robust to outliers, and is solved by an iterative algorithm proposed.
Abstract: Fisher linear discriminant analysis (LDA) is a classical subspace learning technique of extracting discriminative features for pattern recognition problems. The formulation of the Fisher criterion is based on the L2-norm, which makes LDA prone to being affected by the presence of outliers. In this paper, we propose a new method, termed LDA-L1, by maximizing the ratio of the between-class dispersion to the within-class dispersion using the L1-norm rather than the L2-norm. LDA-L1 is robust to outliers, and is solved by an iterative algorithm proposed. The algorithm is easy to be implemented and is theoretically shown to arrive at a locally maximal point. LDA-L1 does not suffer from the problems of small sample size and rank limit as existed in the conventional LDA. Experiment results of image recognition confirm the effectiveness of the proposed method.

Journal ArticleDOI
TL;DR: A novel approach to jet tagging and classification through the use of techniques inspired by computer vision is introduced, and the performance of this technique introduces additional discriminating power over other substructure approaches, and gives significant insight into the internal structure of jets.
Abstract: We introduce a novel approach to jet tagging and classification through the use of techniques inspired by computer vision. Drawing parallels to the problem of facial recognition in images, we define a jet-image using calorimeter towers as the elements of the image and establish jet-image preprocessing methods. For the jet-image processing step, we develop a discriminant for classifying the jet-images derived using Fisher discriminant analysis. The effectiveness of the technique is shown within the context of identifying boosted hadronic W boson decays with respect to a background of quark- and gluon- initiated jets. Using Monte Carlo simulation, we demonstrate that the performance of this technique introduces additional discriminating power over other substructure approaches, and gives significant insight into the internal structure of jets.

Journal ArticleDOI
TL;DR: In this article, a hybrid intelligent system is proposed which includes feature pre-processing using Model-based clustering (Gaussian mixture model), feature reduction/selection using principal component analysis (PCA), linear discriminant analysis (LDA), sequential forward selection (SFS) and sequential backward selection(SBS).

Journal ArticleDOI
TL;DR: A support vector machine (SVM)-based recursive feature elimination procedure with a normalized mutual information feature selection (NMIFS) procedure is integrated to avoid their singular disadvantages, and a new feature selection method, which is called the SVM-RFE with an NMIFS filter (SRN), is proposed.
Abstract: Masses are the primary indications of breast cancer in mammograms, and it is important to classify them as benign or malignant Benign and malignant masses differ in geometry and texture characteristics However, not every geometry and texture feature that is extracted contributes to the improvement of classification accuracy; thus, to select the best features from a set is important In this paper, we examine the feature selection methods for mass classification We integrate a support vector machine (SVM)-based recursive feature elimination (SVM-RFE) procedure with a normalized mutual information feature selection (NMIFS) to avoid their singular disadvantages (the redundancy in the selected features of the SVM-RFE and the unoptimized classifier for the NMIFS) while retaining their advantages, and we propose a new feature selection method, which is called the SVM-RFE with an NMIFS filter (SRN) In addition to feature selection, we also study the initialization of mass segmentation Different initialization methods are investigated, and we propose a fuzzy c-means (FCM) clustering, with spatial constraints as the initialization step In the experiments, 826 regions of interest (ROIs) from the Digital Database for Screening Mammography were used All 826 were used in the classification experiments, and 413 ROIs were used in the feature selection experiments Different feature selection methods, including F-score, Relief, SVM-RFE, SVM-RFE with a minimum redundancy-maximum relevance (mRMR) filter [SVM-RFE (mRMR)], and SRN, were used to select features and to compare mass classification results using the selected features In the classification experiments, the linear discriminant analysis and the SVM classifiers were investigated The accuracy that is obtained with the SVM classifier using the selected features obtained by the F-score, Relief, SVM-RFE, SVM-RFE (mRMR), and SRN methods are 88%, 88%, 90%, 91%, and 93%, respectively, with a tenfold cross-validation procedure, and 91%, 89%, 92%, 92%, and 94%, respectively, with a leave-one-out (LOO) scheme We also compared the performance of the different feature selection methods using the receiver operating characteristic analysis and the areas under the curve (AUCs) The AUCs for the F-score, Relief, SVM-RFE, SVM-RFE (mRMR), and SRN methods are 09014, 08916, 09121, 09236, and 09439, respectively, with a tenfold cross-validation procedure, and are 09312, 09178, 09324, 09413, and 09615, respectively, with a LOO scheme Both the accuracy and AUC values show that the proposed SRN feature selection method has the best performance In addition to the accuracy and the AUC, we also measured the significance between the two best feature selection methods, ie, the SVM-RFE (mRMR) and the proposed SRN method Experimental results show that the proposed SRN method is significantly more accurate than the SVM-RFE (mRMR) (p = 0011)

Journal ArticleDOI
TL;DR: This work proposes multitask linear discriminant analysis (LDA), a novel multitask learning framework for multiview action recognition that allows for the sharing of discriminative SSM features among different views (i.e., tasks) by choosing an appropriate class indicator matrix.
Abstract: Robust action recognition under viewpoint changes has received considerable attention recently. To this end, self-similarity matrices (SSMs) have been found to be effective view-invariant action descriptors. To enhance the performance of SSM-based methods, we propose multitask linear discriminant analysis (LDA), a novel multitask learning framework for multiview action recognition that allows for the sharing of discriminative SSM features among different views (i.e., tasks). Inspired by the mathematical connection between multivariate linear regression and LDA, we model multitask multiclass LDA as a single optimization problem by choosing an appropriate class indicator matrix. In particular, we propose two variants of graph-guided multitask LDA: 1) where the graph weights specifying view dependencies are fixed a priori and 2) where graph weights are flexibly learnt from the training data. We evaluate the proposed methods extensively on multiview RGB and RGBD video data sets, and experimental results confirm that the proposed approaches compare favorably with the state-of-the-art.

Journal ArticleDOI
TL;DR: Different substitutes of missing values namely: zero, mean, median, k-nearest neighbours (kNN) and random forest (RF) imputation are analysed in terms of their influence on unsupervised and supervised learning and, thus, their impact on the final output(s) of biological interpretation.
Abstract: Missing values are known to be problematic for the analysis of gas chromatography-mass spectrometry (GC-MS) metabolomics data. Typically these values cover about 10%–20% of all data and can originate from various backgrounds, including analytical, computational, as well as biological. Currently, the most well known substitute for missing values is a mean imputation. In fact, some researchers consider this aspect of data analysis in their metabolomics pipeline as so routine that they do not even mention using this replacement approach. However, this may have a significant influence on the data analysis output(s) and might be highly sensitive to the distribution of samples between different classes. Therefore, in this study we have analysed different substitutes of missing values namely: zero, mean, median, k-nearest neighbours (kNN) and random forest (RF) imputation, in terms of their influence on unsupervised and supervised learning and, thus, their impact on the final output(s) in terms of biological interpretation. These comparisons have been demonstrated both visually and computationally (classification rate) to support our findings. The results show that the selection of the replacement methods to impute missing values may have a considerable effect on the classification accuracy, if performed incorrectly this may negatively influence the biomarkers selected for an early disease diagnosis or identification of cancer related metabolites. In the case of GC-MS metabolomics data studied here our findings recommend that RF should be favored as an imputation of missing value over the other tested methods. This approach displayed excellent results in terms of classification rate for both supervised methods namely: principal components-linear discriminant analysis (PC-LDA) (98.02%) and partial least squares-discriminant analysis (PLS-DA) (97.96%) outperforming other imputation methods.

Journal ArticleDOI
TL;DR: Most classifiers (SVM, bundling and especially PLDA and ANN) performed significantly better on datasets pre-processed by log-transformation and standardization than on the original dataset.

Journal ArticleDOI
TL;DR: An automatic procedure to classify legume species using scanned leaves based only on the analysis of their veins based on state-of-the-art classifiers outperforms human expert classification.

Journal ArticleDOI
TL;DR: In this paper, dimensionality reduction targeting the preservation of multimodal structures is proposed to counter the parameter-space issue, where locality-preserving nonnegative matrix factorization, as well as local Fisher's discriminant analysis, is deployed as preprocessing to reduce the dimensionality of data for the Gaussian-mixture-model classifier.
Abstract: The Gaussian mixture model is a well-known classification tool that captures non-Gaussian statistics of multivariate data. However, the impractically large size of the resulting parameter space has hindered widespread adoption of Gaussian mixture models for hyperspectral imagery. To counter this parameter-space issue, dimensionality reduction targeting the preservation of multimodal structures is proposed. Specifically, locality-preserving nonnegative matrix factorization, as well as local Fisher's discriminant analysis, is deployed as preprocessing to reduce the dimensionality of data for the Gaussian-mixture-model classifier, while preserving multimodal structures within the data. In addition, the pixel-wise classification results from the Gaussian mixture model are combined with spatial-context information resulting from a Markov random field. Experimental results demonstrate that the proposed classification system significantly outperforms other approaches even under limited training data.

Journal ArticleDOI
TL;DR: This paper proposes a novel facial feature extraction method named Gabor ordinal measures (GOM), which integrates the distinctiveness of Gabor features and the robustness of Ordinal measures as a promising solution to jointly handle inter-person similarity and intra-person variations in face images.
Abstract: Great progress has been achieved in face recognition in the last three decades. However, it is still challenging to characterize the identity related features in face images. This paper proposes a novel facial feature extraction method named Gabor ordinal measures (GOM), which integrates the distinctiveness of Gabor features and the robustness of ordinal measures as a promising solution to jointly handle inter-person similarity and intra-person variations in face images. In the proposal, different kinds of ordinal measures are derived from magnitude, phase, real, and imaginary components of Gabor images, respectively, and then are jointly encoded as visual primitives in local regions. The statistical distributions of these visual primitives in face image blocks are concatenated into a feature vector and linear discriminant analysis is further used to obtain a compact and discriminative feature representation. Finally, a two-stage cascade learning method and a greedy block selection method are used to train a strong classifier for face recognition. Extensive experiments on publicly available face image databases, such as FERET, AR, and large scale FRGC v2.0, demonstrate state-of-the-art face recognition performance of GOM.

Journal ArticleDOI
TL;DR: A manuscript with theoretical details, a critical analysis of published work, and a guideline for the reader to check and propose mathematical models of experimental results using the most promising supervised and unsupervised multivariate statistical techniques are presented.
Abstract: The use of univariate, bivariate, and multivariate statistical techniques, such as analysis of variance, multiple comparisons of means, and linear correlations, has spread widely in the area of Food Science and Technology. However, the use of supervised and unsupervised statistical techniques (chemometrics) in order to analyze and model experimental data from physicochemical, sensory, metabolomics, quality control, nutritional, microbiological, and chemical assays in food research has gained more space. Therefore, we present here a manuscript with theoretical details, a critical analysis of published work, and a guideline for the reader to check and propose mathematical models of experimental results using the most promising supervised and unsupervised multivariate statistical techniques, namely: principal component analysis, hierarchical cluster analysis, linear discriminant analysis, partial least square regression, k-nearest neighbors, and soft independent modeling of class analogy. In addition, the overall features, advantages, and limitations of such statistical methods are presented and discussed. Published examples are focused on sensory, chemical, and antioxidant activity of a wide range of fruit juices consumed worldwide.

Journal ArticleDOI
TL;DR: Experimental results demonstrate that the proposed sparse graph-based discriminant analysis can yield superior classification performance with much lower dimensionality as compared to performance on the original data or on data transformed with other dimensionality-reduction approaches.
Abstract: Sparsity-preserving graph construction is investigated for the dimensionality reduction of hyperspectral imagery. In particular, a sparse graph-based discriminant analysis is proposed when labeled samples are available. By forcing the projection to be along the direction where a sample is clustered with within-class samples that best represented it, the discriminative power can be enhanced. The proposed method has no requirement on the number of labeled samples as in traditional linear discriminant analysis, and it can be solved by a simple generalized eigenproblem. The quality of the dimensionality reduction is evaluated by a support vector machine with a composite spatial-spectral kernel. Experimental results demonstrate that the proposed sparse graph-based discriminant analysis can yield superior classification performance with much lower dimensionality as compared to performance on the original data or on data transformed with other dimensionality-reduction approaches.

Journal ArticleDOI
TL;DR: The k-nearest neighbour algorithm is found to be the most accurate in classifying the features, with a maximum accuracy of 93% with the features selected using information gain ranking.
Abstract: In this work, an attempt has been made to differentiate surface electromyography (sEMG) signals under muscle fatigue and non-fatigue conditions with multiple time window (MTW) features. sEMG signals are recorded from biceps brachii muscles of 50 volunteers. Eleven MTW features are extracted from the acquired signals using four window functions, namely rectangular windows, Hamming windows, trapezoidal windows, and Slepian windows. Prominent features are selected using genetic algorithm and information gain based ranking. Four different classification algorithms, namely naive Bayes, support vector machines, k-nearest neighbour, and linear discriminant analysis, are used for the study. Classifier performances with the MTW features are compared with the currently used time- and frequency-domain features. The results show a reduction in mean and median frequencies of the signals under fatigue. Mean and variance of the features differ by an order of magnitude between the two cases considered. The number of features is reduced by 45% with the genetic algorithm and 36% with information gain based ranking. The k-nearest neighbour algorithm is found to be the most accurate in classifying the features, with a maximum accuracy of 93% with the features selected using information gain ranking.

Book ChapterDOI
TL;DR: Multivariate statistical techniques are used extensively in metabolomics studies, ranging from biomarker selection to model building and validation, as well as classification and regression models and model related variable selection techniques, including partial least squares, logistic regression, support vector machine, and random forest.
Abstract: Multivariate statistical techniques are used extensively in metabolomics studies, ranging from biomarker selection to model building and validation. Two model independent variable selection techniques, principal component analysis and two sample t-tests are discussed in this chapter, as well as classification and regression models and model related variable selection techniques, including partial least squares, logistic regression, support vector machine, and random forest. Model evaluation and validation methods, such as leave-one-out cross-validation, Monte Carlo cross-validation, and receiver operating characteristic analysis, are introduced with an emphasis to avoid over-fitting the data. The advantages and the limitations of the statistical techniques are also discussed in this chapter.

Journal ArticleDOI
TL;DR: In the framework of handwriting recognition, a novel GA-based feature selection algorithm in which feature subsets are evaluated by means of a specifically devised separability index that represents an extension of the Fisher Linear Discriminant method and uses covariance matrices for estimating how class probability distributions are spread out in the considered N-dimensional feature space.

Journal ArticleDOI
TL;DR: The study results demonstrate that the use of the normalized RR interval features greatly improves the positive predictive accuracy of identifying the normal heartbe beats and the sensitivity for identifying the supraventricular ectopic heartbeats in comparison with the use with the nonnormalized RR intervals features.
Abstract: This study developed an automatic heartbeat classification system for identifying normal beats, supraventricular ectopic beats, and ventricular ectopic beats based on normalized RR intervals and morphological features. The proposed heartbeat classification system consists of signal preprocessing, feature extraction, and linear discriminant classification. First, the signal preprocessing removed the high-frequency noise and baseline drift of the original ECG signal. Then the feature extraction derived the normalized RR intervals and two types of morphological features using wavelet analysis and linear prediction modeling. Finally, the linear discriminant classifier combined the extracted features to classify heartbeats. A total of 99,827 heartbeats obtained from the MIT-BIH Arrhythmia Database were divided into three datasets for the training and testing of the optimized heartbeat classification system. The study results demonstrate that the use of the normalized RR interval features greatly improves the positive predictive accuracy of identifying the normal heartbeats and the sensitivity for identifying the supraventricular ectopic heartbeats in comparison with the use of the nonnormalized RR interval features. In addition, the combination of the wavelet and linear prediction morphological features has higher global performance than only using the wavelet features or the linear prediction features.

Journal ArticleDOI
TL;DR: Several different variable selection approaches were applied to the analysis of a common set of metabolomics data generated by Curie-point pyrolysis mass spectrometry, where the goal of the study was to classify the Gram-positive bacteria Bacillus.

Journal ArticleDOI
TL;DR: Experiments on three standard face databases illustrate FLDA and SDA via L 2,1 -norm penalty term can significantly improve their recognition performance, and obtain inspiring results with low computation cost and for low-dimension feature.