scispace - formally typeset
Search or ask a question
Topic

Linear discriminant analysis

About: Linear discriminant analysis is a research topic. Over the lifetime, 18361 publications have been published within this topic receiving 603195 citations. The topic is also known as: Linear discriminant analysis & LDA.


Papers
More filters
Journal ArticleDOI
TL;DR: This study analyzes the comparison between traditional statistical methodologies for distress classification and prediction, i.e., linear discriminant (LDA) or logit analyses, with an artificial intelligence algorithm known as neural networks (NN), and suggests a combined approach for predictive reinforcement.
Abstract: This study analyzes the comparison between traditional statistical methodologies for distress classification and prediction, i.e., linear discriminant (LDA) or logit analyses, with an artificial intelligence algorithm known as neural networks (NN). Analyzing well over 1,000 healthy, vulnerable and unsound industrial Italian firms from 1982–1992, this study was carried out at the Centrale dei Bilanci in Turin, Italy and is now being tested in actual diagnostic situations. The results are part of a larger effort involving separate models for industrial, retailing/trading and construction firms. The results indicate a balanced degree of accuracy and other beneficial characteristics between LDA and NN. We are particularly careful to point out the problems of the ‘black-box’ NN systems, including illogical weightings of the indicators and overfitting in the training stage both of which negatively impacts predictive accuracy. Both types of diagnoslic techniques displayed acceptable, over 90%, classificalion and holdoul sample accuracy and the study concludes that there certainly should be further studies and tests using the two lechniques and suggests a combined approach for predictive reinforcement.

1,037 citations

Journal ArticleDOI
TL;DR: Surprisingly, for all tasks, such a seemingly naive PCANet model is on par with the state-of-the-art features either prefixed, highly hand-crafted, or carefully learned [by deep neural networks (DNNs)].
Abstract: In this paper, we propose a very simple deep learning network for image classification that is based on very basic data processing components: 1) cascaded principal component analysis (PCA); 2) binary hashing; and 3) blockwise histograms. In the proposed architecture, the PCA is employed to learn multistage filter banks. This is followed by simple binary hashing and block histograms for indexing and pooling. This architecture is thus called the PCA network (PCANet) and can be extremely easily and efficiently designed and learned. For comparison and to provide a better understanding, we also introduce and study two simple variations of PCANet: 1) RandNet and 2) LDANet. They share the same topology as PCANet, but their cascaded filters are either randomly selected or learned from linear discriminant analysis. We have extensively tested these basic networks on many benchmark visual data sets for different tasks, including Labeled Faces in the Wild (LFW) for face verification; the MultiPIE, Extended Yale B, AR, Facial Recognition Technology (FERET) data sets for face recognition; and MNIST for hand-written digit recognition. Surprisingly, for all tasks, such a seemingly naive PCANet model is on par with the state-of-the-art features either prefixed, highly hand-crafted, or carefully learned [by deep neural networks (DNNs)]. Even more surprisingly, the model sets new records for many classification tasks on the Extended Yale B, AR, and FERET data sets and on MNIST variations. Additional experiments on other public data sets also demonstrate the potential of PCANet to serve as a simple but highly competitive baseline for texture classification and object recognition.

1,034 citations

Proceedings ArticleDOI
27 Dec 2005
TL;DR: It is shown that existing SVM software can be used to solve the SVM/LDA formulation and empirical comparisons of the proposed algorithm with SVM and LDA using both synthetic and real world benchmark data are presented.
Abstract: This paper describes a new large margin classifier, named SVM/LDA. This classifier can be viewed as an extension of support vector machine (SVM) by incorporating some global information about the data. The SVM/LDA classifier can be also seen as a generalization of linear discriminant analysis (LDA) by incorporating the idea of (local) margin maximization into standard LDA formulation. We show that existing SVM software can be used to solve the SVM/LDA formulation. We also present empirical comparisons of the proposed algorithm with SVM and LDA using both synthetic and real world benchmark data.

1,030 citations

Proceedings Article
01 Jan 2018
TL;DR: This paper proposes a simple yet effective method for detecting any abnormal samples, which is applicable to any pre-trained softmax neural classifier, and obtains the class conditional Gaussian distributions with respect to (low- and upper-level) features of the deep models under Gaussian discriminant analysis.
Abstract: Detecting test samples drawn sufficiently far away from the training distribution statistically or adversarially is a fundamental requirement for deploying a good classifier in many real-world machine learning applications. However, deep neural networks with the softmax classifier are known to produce highly overconfident posterior distributions even for such abnormal samples. In this paper, we propose a simple yet effective method for detecting any abnormal samples, which is applicable to any pre-trained softmax neural classifier. We obtain the class conditional Gaussian distributions with respect to (low- and upper-level) features of the deep models under Gaussian discriminant analysis, which result in a confidence score based on the Mahalanobis distance. While most prior methods have been evaluated for detecting either out-of-distribution or adversarial samples, but not both, the proposed method achieves the state-of-the-art performances for both cases in our experiments. Moreover, we found that our proposed method is more robust in harsh cases, e.g., when the training dataset has noisy labels or small number of samples. Finally, we show that the proposed method enjoys broader usage by applying it to class-incremental learning: whenever out-of-distribution samples are detected, our classification rule can incorporate new classes well without further training deep models.

1,022 citations

Journal ArticleDOI
TL;DR: In this work, a versatile signal processing and analysis framework for Electroencephalogram (EEG) was proposed and a set of statistical features was extracted from the sub-bands to represent the distribution of wavelet coefficients.
Abstract: In this work, we proposed a versatile signal processing and analysis framework for Electroencephalogram (EEG). Within this framework the signals were decomposed into the frequency sub-bands using DWT and a set of statistical features was extracted from the sub-bands to represent the distribution of wavelet coefficients. Principal components analysis (PCA), independent components analysis (ICA) and linear discriminant analysis (LDA) is used to reduce the dimension of data. Then these features were used as an input to a support vector machine (SVM) with two discrete outputs: epileptic seizure or not. The performance of classification process due to different methods is presented and compared to show the excellent of classification process. These findings are presented as an example of a method for training, and testing a seizure prediction method on data from individual petit mal epileptic patients. Given the heterogeneity of epilepsy, it is likely that methods of this type will be required to configure intelligent devices for treating epilepsy to each individual's neurophysiology prior to clinical operation.

1,010 citations


Network Information
Related Topics (5)
Regression analysis
31K papers, 1.7M citations
85% related
Artificial neural network
207K papers, 4.5M citations
80% related
Feature extraction
111.8K papers, 2.1M citations
80% related
Cluster analysis
146.5K papers, 2.9M citations
79% related
Image segmentation
79.6K papers, 1.8M citations
79% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20251
20242
2023756
20221,711
2021678
2020815