scispace - formally typeset
Search or ask a question
Topic

Linear discriminant analysis

About: Linear discriminant analysis is a research topic. Over the lifetime, 18361 publications have been published within this topic receiving 603195 citations. The topic is also known as: Linear discriminant analysis & LDA.


Papers
More filters
Journal ArticleDOI
TL;DR: This work proposes algorithms for feature extraction and classification based on orthogonal or nonnegative tensor (multi-array) decompositions, and higher order (multilinear) discriminant analysis (HODA), whereby input data are considered as tensors instead of more conventional vector or matrix representations.
Abstract: Feature extraction and selection are key factors in model reduction, classification and pattern recognition problems. This is especially important for input data with large dimensions such as brain recording or multiview images, where appropriate feature extraction is a prerequisite to classification. To ensure that the reduced dataset contains maximum information about input data we propose algorithms for feature extraction and classification. This is achieved based on orthogonal or nonnegative tensor (multi-array) decompositions, and higher order (multilinear) discriminant analysis (HODA), whereby input data are considered as tensors instead of more conventional vector or matrix representations. The developed algorithms are verified on benchmark datasets, using constraints imposed on tensors and/or factor matrices such as orthogonality and nonnegativity.

212 citations

Journal ArticleDOI
TL;DR: In this article, the performance of three discriminant functions in classifying individuals into two multivariate normally distributed populations when covariance matrices are unequal is compared by using Monte Carlo methods, and the expected value of the probabilities is used as the measure of performance.
Abstract: This study compares by Monte Carlo methods the performance of three discriminant functions in classifying individuals into two multivariate normally distributed populations when covariance matrices are unequal—the quadratic, best linear and Fisher's linear discriminant function. The comparison is carried out both asymptotically and using samples. The expected value of the probabilities is used as the measure of performance. Parameters that are varied in the study include the distance between the populations, covariance matrices, number of dimensions, samples size and a priori probabilities of origin from the populations.

211 citations

Journal ArticleDOI
TL;DR: A method is proposed for estimating the likelihood ratio classification rule in practical situations and assessing its performance, and its performance is compared with that of some other classification rules.
Abstract: The likelihood ratio classification rule is derived from the location model, applicable when the data contains both binary and continuous variables. A method is proposed for estimating the rule in practical situations and assessing its performance. Losses incurred by the estimation procedure are investigated, and use of Fisher's linear discriminant function on such data is studied for the case of known population parameters. Finally, the proposed rule is applied to some data sets, and its performance is compared with that of some other classification rules.

211 citations

Journal ArticleDOI
TL;DR: This paper applied statistical tests based on discriminant analysis to the wide range of photospheric magnetic parameters described in a companion paper by Leka & Barnes, with the goal of identifying those properties that are important for the production of energetic events such as solar flares.
Abstract: We apply statistical tests based on discriminant analysis to the wide range of photospheric magnetic parameters described in a companion paper by Leka & Barnes, with the goal of identifying those properties that are important for the production of energetic events such as solar flares. The photospheric vector magnetic field data from the University of Hawai'i Imaging Vector Magnetograph are well sampled both temporally and spatially, and we include here data covering 24 flare-event and flare-quiet epochs taken from seven active regions. The mean value and rate of change of each magnetic parameter are treated as separate variables, thus evaluating both the parameter's state and its evolution, to determine which properties are associated with flaring. Considering single variables first, Hotelling's T2-tests show small statistical differences between flare-producing and flare-quiet epochs. Even pairs of variables considered simultaneously, which do show a statistical difference for a number of properties, have high error rates, implying a large degree of overlap of the samples. To better distinguish between flare-producing and flare-quiet populations, larger numbers of variables are simultaneously considered; lower error rates result, but no unique combination of variables is clearly the best discriminator. The sample size is too small to directly compare the predictive power of large numbers of variables simultaneously. Instead, we rank all possible four-variable permutations based on Hotelling's T2-test and look for the most frequently appearing variables in the best permutations, with the interpretation that they are most likely to be associated with flaring. These variables include an increasing kurtosis of the twist parameter and a larger standard deviation of the twist parameter, but a smaller standard deviation of the distribution of the horizontal shear angle and a horizontal field that has a smaller standard deviation but a larger kurtosis. To support the "sorting all permutations" method of selecting the most frequently occurring variables, we show that the results of a single 10-variable discriminant analysis are consistent with the ranking. We demonstrate that individually, the variables considered here have little ability to differentiate between flaring and flare-quiet populations, but with multivariable combinations, the populations may be distinguished.

211 citations

Journal ArticleDOI
TL;DR: This article proposes an alternative approach to RDA of discriminant analysis in the Gaussian framework, called EDDA, that is based on the reparameterization of the covariance matrix of a group Gk in terms of its eigenvalue decomposition.
Abstract: Friedman proposed a regularization technique (RDA) of discriminant analysis in the Gaussian framework. RDA uses two regularization parameters to design an intermediate classifier between the linear, the quadratic the nearest-means classifiers. In this article we propose an alternative approach, called EDDA, that is based on the reparameterization of the covariance matrix [Σ k ] of a group Gk in terms of its eigenvalue decomposition Σ k = λ k D k A k D k ′, where λk specifies the volume of density contours of Gk, the diagonal matrix of eigenvalues specifies its shape the eigenvectors specify its orientation. Variations on constraints concerning volumes, shapes orientations λ k , A k , and D k lead to 14 discrimination models of interest. For each model, we derived the normal theory maximum likelihood parameter estimates. Our approach consists of selecting a model by minimizing the sample-based estimate of future misclassification risk by cross-validation. Numerical experiments on simulated and rea...

210 citations


Network Information
Related Topics (5)
Regression analysis
31K papers, 1.7M citations
85% related
Artificial neural network
207K papers, 4.5M citations
80% related
Feature extraction
111.8K papers, 2.1M citations
80% related
Cluster analysis
146.5K papers, 2.9M citations
79% related
Image segmentation
79.6K papers, 1.8M citations
79% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20251
20242
2023756
20221,711
2021678
2020815