scispace - formally typeset
Search or ask a question
Topic

Linear elasticity

About: Linear elasticity is a research topic. Over the lifetime, 9080 publications have been published within this topic receiving 258684 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the dynamics of conical, cylindrical shells and annular plates were analyzed using the first-order shear deformation theory (FSDT) and the generalized differential quadrature (GDQ) method.

315 citations

Book
01 Jan 2008
TL;DR: In this paper, the authors present a review of the literature on finite element fracture models and their application in the field of finite element finite element models (FEM) and fracture mechanics.
Abstract: Dedication. Preface . Nomenclature . Chapter 1 Introduction. 1.1 ANALYSIS OF STRUCTURES. 1.2 ANALYSIS OF DISCONTINUITIES. 1.3 FRACTURE MECHANICS. 1.4 CRACK MODELLING. 1.4.1 Local and non-local models. 1.4.2 Smeared crack model. 1.4.3 Discrete inter-element crack. 1.4.4 Discrete cracked element. 1.4.5 Singular elements. 1.4.6 Enriched elements. 1.5 ALTERNATIVE TECHNIQUES. 1.6 A REVIEW OF XFEM APPLICATIONS. 1.6.1 General aspects of XFEM. 1.6.2 Localisation and fracture. 1.6.3 Composites. 1.6.4 Contact. 1.6.5 Dynamics. 1.6.6 Large deformation/shells. 1.6.7 Multiscale. 1.6.8 Multiphase/solidification. 1.7 SCOPE OF THE BOOK. Chapter 2 Fracture Mechanics, a Review. 2.1 INTRODUCTION. 2.2 BASICS OF ELASTICITY. 2.2.1 Stress-strain relations. 2.2.2 Airy stress function. 2.2.3 Complex stress functions. 2.3 BASICS OF LEFM. 2.3.1 Fracture mechanics. 2.3.2 Circular hole. 2.3.3 Elliptical hole. 2.3.4 Westergaard analysis of a sharp crack. 2.4 STRESS INTENSITY FACTOR, K . 2.4.1 Definition of the stress intensity factor. 2.4.2 Examples of stress intensity factors for LEFM. 2.4.3 Griffith theories of strength and energy. 2.4.4 Brittle material. 2.4.5 Quasi-brittle material. 2.4.6 Crack stability. 2.4.7 Fixed grip versus fixed load. 2.4.8 Mixed mode crack propagation. 2.5 SOLUTION PROCEDURES FOR K AND G . 2.5.1 Displacement extrapolation/correlation method. 2.5.2 Mode I energy release rate. 2.5.3 Mode I stiffness derivative/virtual crack model. 2.5.4 Two virtual crack extensions for mixed mode cases. 2.5.5 Single virtual crack extension based on displacement decomposition. 2.5.6 Quarter point singular elements. 2.6 ELASTOPLASTIC FRACTURE MECHANICS (EPFM). 2.6.1 Plastic zone. 2.6.2 Crack tip opening displacements (CTOD). 2.6.3 J integral. 2.6.4 Plastic crack tip fields. 2.6.5 Generalisation of J . 2.7 NUMERICAL METHODS BASED ON THE J INTEGRAL. 2.7.1 Nodal solution. 2.7.2 General finite element solution. 2.7.3 Equivalent domain integral (EDI) method. 2.7.4 Interaction integral method. Chapter 3 Extended Finite Element Method for Isotropic Problems. 3.1 INTRODUCTION. 3.2 A REVIEW OF XFEM DEVELOPMENT. 3.3 BASICS OF FEM. 3.3.1 Isoparametric finite elements, a short review. 3.3.2 Finite element solutions for fracture mechanics. 3.4 PARTITION OF UNITY. 3.5 ENRICHMENT. 3.5.1 Intrinsic enrichment. 3.5.2 Extrinsic enrichment. 3.5.3 Partition of unity finite element method. 3.5.4 Generalised finite element method. 3.5.5 Extended finite element method. 3.5.6 Hp-clouds enrichment. 3.5.7 Generalisation of the PU enrichment. 3.5.8 Transition from standard to enriched approximation. 3.6 ISOTROPIC XFEM. 3.6.1 Basic XFEM approximation. 3.6.2 Signed distance function. 3.6.3 Modelling strong discontinuous fields. 3.6.4 Modelling weak discontinuous fields. 3.6.5 Plastic enrichment. 3.6.6 Selection of nodes for discontinuity enrichment. 3.6.7 Modelling the crack. 3.7 DISCRETIZATION AND INTEGRATION. 3.7.1 Governing equation. 3.7.2 XFEM discretization. 3.7.3 Element partitioning and numerical integration. 3.7.4 Crack intersection. 3.8 TRACKING MOVING BOUNDARIES. 3.8.1 Level set method. 3.8.2 Fast marching method. 3.8.3 Ordered upwind method. 3.9 NUMERICAL SIMULATIONS. 3.9.1 A tensile plate with a central crack. 3.9.2 Double edge cracks. 3.9.3 Double internal collinear cracks. 3.9.4 A central crack in an infinite plate. 3.9.5 An edge crack in a finite plate. Chapter 4 XFEM for Orthotropic Problems. 4.1 INTRODUCTION. 4.2 ANISOTROPIC ELASTICITY. 4.2.1 Elasticity solution. 4.2.2 Anisotropic stress functions. 4.2.3 Orthotropic mixed mode problems. 4.2.4 Energy release rate and stress intensity factor for anisotropic. materials. 4.2.5 Anisotropic singular elements. 4.3 ANALYTICAL SOLUTIONS FOR NEAR CRACK TIP. 4.3.1 Near crack tip displacement field (class I). 4.3.2 Near crack tip displacement field (class II). 4.3.3 Unified near crack tip displacement field (both classes). 4.4 ANISOTROPIC XFEM. 4.4.1 Governing equation. 4.4.2 XFEM discretization. 4.4.3 SIF calculations. 4.5 NUMERICAL SIMULATIONS. 4.5.1 Plate with a crack parallel to material axis of orthotropy. 4.5.2 Edge crack with several orientations of the axes of orthotropy. 4.5.3 Single edge notched tensile specimen with crack inclination. 4.5.4 Central slanted crack. 4.5.5 An inclined centre crack in a disk subjected to point loads. 4.5.6 A crack between orthotropic and isotropic materials subjected to. tensile tractions. Chapter 5 XFEM for Cohesive Cracks. 5.1 INTRODUCTION. 5.2 COHESIVE CRACKS. 5.2.1 Cohesive crack models. 5.2.2 Numerical models for cohesive cracks. 5.2.3 Crack propagation criteria. 5.2.4 Snap-back behaviour. 5.2.5 Griffith criterion for cohesive crack. 5.2.6 Cohesive crack model. 5.3 XFEM FOR COHESIVE CRACKS. 5.3.1 Enrichment functions. 5.3.2 Governing equations. 5.3.3 XFEM discretization. 5.4 NUMERICAL SIMULATIONS. 5.4.1 Mixed mode bending beam. 5.4.2 Four point bending beam. 5.4.3 Double cantilever beam. Chapter 6 New Frontiers. 6.1 INTRODUCTION. 6.2 INTERFACE CRACKS. 6.2.1 Elasticity solution for isotropic bimaterial interface. 6.2.2 Stability of interface cracks. 6.2.3 XFEM approximation for interface cracks. 6.3 CONTACT. 6.3.1 Numerical models for a contact problem. 6.3.2 XFEM modelling of a contact problem. 6.4 DYNAMIC FRACTURE. 6.4.1 Dynamic crack propagation by XFEM. 6.4.2 Dynamic LEFM. 6.4.3 Dynamic orthotropic LEFM. 6.4.4 Basic formulation of dynamic XFEM. 6.4.5 XFEM discretization. 6.4.6 Time integration. 6.4.7 Time finite element method. 6.4.8 Time extended finite element method. 6.5 MULTISCALE XFEM. 6.5.1 Basic formulation. 6.5.2 The zoom technique. 6.5.3 Homogenisation based techniques. 6.5.4 XFEM discretization. 6.6 MULTIPHASE XFEM. 6.6.1 Basic formulation. 6.6.2 XFEM approximation. 6.6.3 Two-phase fluid flow. 6.6.4 XFEM approximation. Chapter 7 XFEM Flow. 7.1 INTRODUCTION. 7.2 AVAILABLE OPEN-SOURCE XFEM. 7.3. FINITE ELEMENT ANALYSIS. 7.3.1 Defining the model. 7.3.2 Creating the finite element mesh. 7.3.3 Linear elastic analysis. 7.3.4 Large deformation. 7.3.5 Nonlinear (elastoplastic) analysis. 7.3.6 Material constitutive matrix. 7.4 XFEM. 7.4.1 Front tracking. 7.4.2 Enrichment detection. 7.4.3 Enrichment functions. 7.4.4 Ramp (transition) functions. 7.4.5 Evaluation of the B matrix. 7.5 NUMERICAL INTEGRATION. 7.5.1 Sub-quads. 7.5.2 Sub-triangles. 7.6 SOLVER. 7.6.1 XFEM degrees of freedom. 7.6.2 Time integration. 7.6.3 Simultaneous equations solver. 7.6.4 Crack length control. 7.7 POST-PROCESSING. 7.7.1 Stress intensity factor. 7.7.2 Crack growth. 7.7.3 Other applications. 7.8 CONFIGURATION UPDATE. References . Index

314 citations

Journal ArticleDOI
TL;DR: In this paper, a micromechanical analysis for the linear elastic behavior of a low-density foam with open cells is presented, where the foam structure is based on the geometry of Kelvin soap froth with flat faces.
Abstract: A micromechanical analysis for the linear elastic behavior of a low-density foam with open cells is presented. The foam structure is based on the geometry of Kelvin soap froth with flat faces: 14-sided polyhedral cells contain six squares and eight hexagons. Four struts meet at every joint in the perfectly ordered, spatially periodic, open-cell structure. All of the struts and joints have identical shape. Strut-level force-displacement relations are expressed by compliances for stretching, bending, and twisting. We consider arbitrary homogeneous deformations of the foam and present analytic results for the force, moment, and displacement at each strut midpoint and the rotation at each joint. The effective stress-strain relations for the foam, which has cubic symmetry, are represented by three elastic constants, a bulk modulus, and two shear moduli, that depend on the strut compliances. When these compliances are evaluated for specific strut geometries, the shear moduli are nearly equal and therefore the elastic response is nearly isotropic. The variational results of Hashin and Shtrikman are used to calculate the effective isotropic shear modulus of a polycrystal that contain grains of Kelvin foam.

308 citations

Journal ArticleDOI
TL;DR: In this paper, a finite element simulation was performed on a square block in plane strain with an initial edge crack loaded at a constant rate of strain, and it was observed that cohesive laws that have an initial elastic response were observed to produce spontaneous branching at high velocity but to modify the linear elastic properties of the body.
Abstract: Finite element calculations of dynamic fracture based on embedding cohesive surfaces in a continuum indicate that the predictions are sensitive to the cohesive law used. Simulations were performed on a square block in plane strain with an initial edge crack loaded at a constant rate of strain, Cohesive laws that have an initial elastic response were observed to produce spontaneous branching at high velocity, but to modify the linear elastic properties of the body As a consequence the cohesive surface spacing cannot be refined arbitrarily and becomes an important length scale in the simulations. Cohesive laws that are initially rigid do not alter the linear elastic response of the body. However, crack branching behavior was not observed when such a cohesive relation was implemented using a regular finite element mesh.

304 citations

Journal ArticleDOI
13 Nov 2003-Nature
TL;DR: It is shown by large-scale atomistic simulations that the elastic behaviour observed at large strains—hyperelasticity—can play a governing role in the dynamics of fracture, and that linear theory is incapable of fully capturing all fracture phenomena.
Abstract: The elasticity of a solid can vary depending on its state of deformation. For example, metals will soften and polymers may stiffen as they are deformed to levels approaching failure. It is only when the deformation is infinitesimally small that elastic moduli can be considered constant, and hence the elasticity linear. Yet, many existing theories model fracture using linear elasticity, despite the fact that materials will experience extreme deformations at crack tips. Here we show by large-scale atomistic simulations that the elastic behaviour observed at large strains--hyperelasticity--can play a governing role in the dynamics of fracture, and that linear theory is incapable of fully capturing all fracture phenomena. We introduce the concept of a characteristic length scale for the energy flux near the crack tip, and demonstrate that the local hyperelastic wave speed governs the crack speed when the hyperelastic zone approaches this energy length scale.

300 citations


Network Information
Related Topics (5)
Finite element method
178.6K papers, 3M citations
91% related
Fracture mechanics
58.3K papers, 1.3M citations
88% related
Numerical analysis
52.2K papers, 1.2M citations
88% related
Boundary value problem
145.3K papers, 2.7M citations
85% related
Discretization
53K papers, 1M citations
85% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202386
2022223
2021318
2020317
2019312
2018335