scispace - formally typeset
Search or ask a question
Topic

Linear elasticity

About: Linear elasticity is a research topic. Over the lifetime, 9080 publications have been published within this topic receiving 258684 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors describe the out-of-plane linear elastic mechanical properties of trichiral, tetrachiral and hexachiral honeycomb configurations and develop analytical models to calculate the transverse Young's modulus and the Voigt and Reuss bounds for transverse shear stiffness.

193 citations

Journal ArticleDOI
TL;DR: In this paper, a mesostructural model for the mechanical behavior of heterogeneous quasi-brittle materials is used systematically to analyze concrete specimens in 2D. The numerical model is based on the use of zero-thickness interface elements equipped with a normal-shear traction-separation constitutive law representing non-linear fracture, which may be considered a mixedmode generalization of Hillerborg's “Fictitious Crack Model.
Abstract: A recently developed FE-based mesostructural model for the mechanical behavior of heterogeneous quasi-brittle materials is used systematically to analyze concrete specimens in 2D. The numerical model is based on the use of zero-thickness interface elements equipped with a normal-shear traction-separation constitutive law representing non-linear fracture, which may be considered a mixed-mode generalization of Hillerborg’s “Fictitious Crack Model.” Specimens with 4 × 4 and 6 × 6 arrays of aggregates are discretized into finite elements. Interface elements are inserted along the main lines in the mesh, representing potential crack lines. The calculations presented in this paper consist of uniaxial tension loading, and the continuum elements themselves are assumed to behave as linear elastic. In this way, the influence of various aspects of the heterogeneous geometry and interface parameters on the overall specimen response has been investigated. These aspects are aggregate volume fraction, type of arrangement and geometry, interface layout, and values of the crack model parameters chosen for both the aggregate-aggregate and matrix-aggregate interfaces. The results show a good qualitative agreement with experimental observations and illustrate the capabilities of the model. In the companion second part of the paper, the model is used to represent other loading states such as uniaxial compression, Brazilian test, or biaxial loading.

193 citations

Journal ArticleDOI
TL;DR: In this article, a variational inequality formulation for linear elastic contact problems with friction is presented, where the contact surface is constant during the loading history, and the conditions under which this procedure defines a unique solution map which describes the evolution of contact stresses and displacements for a prescribed load history.

191 citations

Book
01 Jan 1990
TL;DR: In this article, the authors present a review of plasticity in geotechnical engineering, focusing on nonlinear stress analyses in soil mechanics, and present a model based on the Cauchy elastic model.
Abstract: Part I. FUNDAMENTALS. 1. Introduction. Characteristics of soil behavior.Idealizations and material modeling. Historical review of plasticity in soil mechanics. Nonlinear stress analyses in geotechnical engineering. Need, objectives and scope. References. 2. Basic Concept of Continuum Mechanics. Introduction. Notations. Stresses in three dimensions. Definitions and notations. Cauchy's formulas, index notation, and summation convention. Principal axes of stresses. Deviatoric stress. Geometrical representation of stresses. Strains in three dimensions. Definitions and notations. Deviatoric strain. Octahedral strains and principal shear strains. Equations of solid mechanics. Equations of equilibrium (or motion). Geometric (compatibility) conditions. Constitutive relations. Summary. References. Part II. MATERIAL MODELING-BASIC CONCEPTS. 3. Elasticity and Modeling . Introduction. Elastic models in geotechnical engineering. Linear elastic model (generalized Hooke's law). Cauchy elastic model. Hyperelastic model. Hypoelastic model. Uniqueness, stability, normality, and convexity for elastic materials. Uniqueness. Drucker's stability postulate. Existence of W and v. Restrictions - normality and convexity. Linear elastic stress-strain relations. Generalized Hooke's law. A plane of symmetry. Two planes of symmetry (orthotropic symmetry). Transverse and cubic isotropies. Full isotropy. Isotropic linear elastic stress-strain relations. Tensor forms. Three-dimensional matrix forms. Plane stress case. Plane strain case. Axisymmetric case. Isotropic nonlinear elastic stress-strain relations based on total formulation. Nonlinear elastic model with secant moduli. Cauchy elastic model. Hyperelastic (green) model. Isotropic nonlinear elastic stress-strain relations based on incremental formulation. Nonlinear elastic model with secant muduli. Cauchy elastic model. Hyerelastic model. Hypoelastic model. Summary. References. 4. Perfect Plasticity and Modeling. Introduction. Deformation theory. An illustrative example. Variable moduli models. Flow theory. Yield criteria. Flow rule. Basic requirements. Perfect plasticity models. Tresca and von Mises models. Coulomb model. Drucker-Prager model. Prandtl-Reuss stress-strain relations. Generalized stress-strain relations. Stiffness formulation. General description. Stiffness coefficients. Summary. References. 5. Hardening Plasticity and Modeling. Introduction. Flow theory. Loading function. Hardening rule. Flow rule. Drucker's postulate. Hardening plasticity models. Lade-Duncan model. Lade model. Nested yield surface models. Generalized multi-surface models. Bounding surface models. Prandtl-Reuss stress-strain relations. Prandtl-Reuss equations. Matrix form of Prandtl-Reuss equations. Generalized stress-strain relations. Incremental stress-strain relations. Isotropic hardening. Kinematic hardening. Mixed hardening. Stiffness formulation. General description. Stiffness coefficients. Summary. References. PART III.

191 citations

Journal ArticleDOI
TL;DR: In this article, a new kind of differential effective medium theory (D-EMT) is proposed to address this problem, where each inclusion particle, surrounded by a shell of another phase, is mapped onto an effective particle of uniform elastic moduli.

191 citations


Network Information
Related Topics (5)
Finite element method
178.6K papers, 3M citations
91% related
Fracture mechanics
58.3K papers, 1.3M citations
88% related
Numerical analysis
52.2K papers, 1.2M citations
88% related
Boundary value problem
145.3K papers, 2.7M citations
85% related
Discretization
53K papers, 1M citations
85% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202386
2022223
2021318
2020317
2019312
2018335