scispace - formally typeset
Search or ask a question
Topic

Linear elasticity

About: Linear elasticity is a research topic. Over the lifetime, 9080 publications have been published within this topic receiving 258684 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, an analytical model for the calculation of the effective linear elastic stiffness of a 2D triaxial flat braided composite (2DTBC) and the effect of initial unintended microstructural imperfections on the calculated stiffnesses is presented.

125 citations

Journal ArticleDOI
TL;DR: Results of experimental strain gauge and theoretical stress analysis methods are used and it is shown that when the cortical bone material is assumed to demonstrate linear elastic, homogeneous and transversely isotropic behavior excellent agreement between experimental results and theoretical predictions is obtained.

125 citations

Journal ArticleDOI
01 Jan 1986
TL;DR: In this paper, a finite element based method is developed for geometrically nonlinear dynamic analysis of spatial articulated structures, i.e., structures in which kinematic connections permit large relative displacement between components that undergo small elastic deformation.
Abstract: A finite element based method is developed for geometrically nonlinear dynamic analysis of spatial articulated structures; i.e., structures in which kinematic connections permit large relative displacement between components that undergo small elastic deformation. Vibration and static correction modes are used to account for linear elastic deformation of components. Kinematic constraints between components are used to define boundary conditions for vibration analysis and loads for static correction mode analysis. Constraint equations between flexible bodies are derived in a systematic way and a Lagrange multiplier formulation is used to generate the coupled large displacement-small deformation equations of motion. A lumped mass finite element structural analysis formulation is used to generate deformation modes. An intermediate-processor is used to calculate time-independent terms in the equations of motion and to generate input data for a large-scale dynamic analysis code that includes coupled e...

125 citations

Journal ArticleDOI
TL;DR: A stabilized finite element method to deal with incompressibility in solid mechanics and the possibility of using linear triangular or tetrahedral finite elements, which are easy to generate for real industrial applications is presented.

124 citations

Journal ArticleDOI
TL;DR: The convergence rate of the natural frequencies is shown to be fast and the stability of the numerical methodology is very good, while the effect of different grid point distributions on the convergence, the stability and the accuracy of the GDQ procedure is investigated.
Abstract: This paper deals with the dynamical behaviour of hemispherical domes and spherical shell panels. The First-order Shear Deformation Theory (FSDT) is used to analyze the above moderately thick structural elements. The treatment is conducted within the theory of linear elasticity, when the material behaviour is assumed to be homogeneous and isotropic. The governing equations of motion, written in terms of internal resultants, are expressed as functions of five kinematic parameters, by using the constitutive and the congruence relationships. The boundary conditions considered are clamped (C), simply supported (S) and free (F) edge. Numerical solutions have been computed by means of the technique known as the Generalized Differential Quadrature (GDQ) Method. These results, which are based upon the FSDT, are compared with the ones obtained using commercial programs such as Abaqus, Ansys, Femap/Nastran, Straus, Pro/Engineer, which also elaborate a three-dimensional analysis. The effect of different grid point distributions on the convergence, the stability and the accuracy of the GDQ procedure is investigated. The convergence rate of the natural frequencies is shown to be fast and the stability of the numerical methodology is very good. The accuracy of the method is sensitive to the number of sampling points used, to their distribution and to the boundary conditions.

124 citations


Network Information
Related Topics (5)
Finite element method
178.6K papers, 3M citations
91% related
Fracture mechanics
58.3K papers, 1.3M citations
88% related
Numerical analysis
52.2K papers, 1.2M citations
88% related
Boundary value problem
145.3K papers, 2.7M citations
85% related
Discretization
53K papers, 1M citations
85% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202386
2022223
2021318
2020317
2019312
2018335