scispace - formally typeset
Topic

Linear-fractional programming

About: Linear-fractional programming is a(n) research topic. Over the lifetime, 3957 publication(s) have been published within this topic receiving 155637 citation(s).
Papers
More filters

Book
01 Dec 1986-
TL;DR: Introduction and Preliminaries.
Abstract: Introduction and Preliminaries. Problems, Algorithms, and Complexity. LINEAR ALGEBRA. Linear Algebra and Complexity. LATTICES AND LINEAR DIOPHANTINE EQUATIONS. Theory of Lattices and Linear Diophantine Equations. Algorithms for Linear Diophantine Equations. Diophantine Approximation and Basis Reduction. POLYHEDRA, LINEAR INEQUALITIES, AND LINEAR PROGRAMMING. Fundamental Concepts and Results on Polyhedra, Linear Inequalities, and Linear Programming. The Structure of Polyhedra. Polarity, and Blocking and Anti--Blocking Polyhedra. Sizes and the Theoretical Complexity of Linear Inequalities and Linear Programming. The Simplex Method. Primal--Dual, Elimination, and Relaxation Methods. Khachiyana s Method for Linear Programming. The Ellipsoid Method for Polyhedra More Generally. Further Polynomiality Results in Linear Programming. INTEGER LINEAR PROGRAMMING. Introduction to Integer Linear Programming. Estimates in Integer Linear Programming. The Complexity of Integer Linear Programming. Totally Unimodular Matrices: Fundamental Properties and Examples. Recognizing Total Unimodularity. Further Theory Related to Total Unimodularity. Integral Polyhedra and Total Dual Integrality. Cutting Planes. Further Methods in Integer Linear Programming. References. Indexes.

6,747 citations


Book
01 Jan 1963-
TL;DR: This classic book looks at a wealth of examples and develops linear programming methods for their solutions and begins by introducing the basic theory of linear inequalities and describes the powerful simplex method used to solve them.
Abstract: In real-world problems related to finance, business, and management, mathematicians and economists frequently encounter optimization problems. In this classic book, George Dantzig looks at a wealth of examples and develops linear programming methods for their solutions. He begins by introducing the basic theory of linear inequalities and describes the powerful simplex method used to solve them. Treatments of the price concept, the transportation problem, and matrix methods are also given, and key mathematical concepts such as the properties of convex sets and linear vector spaces are covered."The author of this book was the main force in establishing a new mathematical discipline, and he has contributed to its further development at every stage and from every angle. This volume ... is a treasure trove for those who work in this field--teachers, students, and users alike. Its encyclopaedic coverage, due in part to collaboration with other experts, makes it an absolute must."--S. Vajda, Zentralblatt fYr Mathematik und ihre Grenzgebiete

5,641 citations


Journal ArticleDOI
Narendra Karmarkar1
01 Dec 1984-Combinatorica
TL;DR: It is proved that given a polytopeP and a strictly interior point a εP, there is a projective transformation of the space that mapsP, a toP′, a′ having the following property: the ratio of the radius of the smallest sphere with center a′, containingP′ to theradius of the largest sphere withCenter a′ contained inP′ isO(n).
Abstract: We present a new polynomial-time algorithm for linear programming. In the worst case, the algorithm requiresO(n 3.5 L) arithmetic operations onO(L) bit numbers, wheren is the number of variables andL is the number of bits in the input. The running-time of this algorithm is better than the ellipsoid algorithm by a factor ofO(n 2.5). We prove that given a polytopeP and a strictly interior point a eP, there is a projective transformation of the space that mapsP, a toP′, a′ having the following property. The ratio of the radius of the smallest sphere with center a′, containingP′ to the radius of the largest sphere with center a′ contained inP′ isO(n). The algorithm consists of repeated application of such projective transformations each followed by optimization over an inscribed sphere to create a sequence of points which converges to the optimal solution in polynomial time.

4,720 citations


Book
01 Aug 1989-
TL;DR: Mathematical Background Topics from Linear Algebra Single Objective Linear Programming Determining all Alternative Optima Comments about Objective Row Parametric Programming Utility Functions, Nondominated Criterion Vectors and Efficient Points Point Estimate Weighted-sums Approach.
Abstract: Mathematical Background Topics from Linear Algebra Single Objective Linear Programming Determining all Alternative Optima Comments about Objective Row Parametric Programming Utility Functions, Nondominated Criterion Vectors and Efficient Points Point Estimate Weighted-sums Approach Optimal Weighting Vectors, Scaling and Reduced Feasible Region Methods Vector-Maximum Algorithms Goal Programming Filtering and Set Discretization Multiple Objective Linear Fractional Programming Interactive Procedures Interactive Weighted Tchebycheff Procedure Tchebycheff/Weighted-Sums Implementation Applications Future Directions Index.

3,247 citations


Journal ArticleDOI
TL;DR: It is shown that solutions obtained by fuzzy linear programming are always efficient solutions and the consequences of using different ways of combining individual objective functions in order to determine an “optimal” compromise solution are shown.
Abstract: In the recent past numerous models and methods have been suggested to solve the vectormaximum problem. Most of these approaches center their attention on linear programming problems with several objective functions. Apart from these approaches the theory of fuzzy sets has been employed to formulate and solve fuzzy linear programming problems. This paper presents the application of fuzzy linear programming approaches to the linear vectormaximum problem. It shows that solutions obtained by fuzzy linear programming are always efficient solutions. It also shows the consequences of using different ways of combining individual objective functions in order to determine an “optimal” compromise solution.

3,117 citations


Network Information
Related Topics (5)
Quadratically constrained quadratic program

2.5K papers, 104K citations

87% related
Linear programming

32.1K papers, 920.3K citations

87% related
Cutting-plane method

1.2K papers, 49.7K citations

86% related
Nonlinear programming

19.4K papers, 656.6K citations

86% related
Knapsack problem

7.4K papers, 163.8K citations

85% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202120
202026
201929
201830
201799
201697

Top Attributes

Show by:

Topic's top 5 most impactful authors

Masatoshi Sakawa

53 papers, 1.1K citations

Ichiro Nishizaki

13 papers, 376 citations

Hideki Katagiri

12 papers, 146 citations

Tamás Terlaky

11 papers, 309 citations

Olvi L. Mangasarian

10 papers, 1K citations