Search or ask a question
Topic

Linear interpolation

About: Linear interpolation is a research topic. Over the lifetime, 6962 publications have been published within this topic receiving 129135 citations. The topic is also known as: linear interpolation, lerp.

Papers
More filters
Book
18 Nov 2011
TL;DR: In this paper, the authors define the Riesz-Thorin Theorem as a necessary and sufficient condition for interpolation spaces, and apply it to approximate spaces in the context of vector spaces.
Abstract: 1. Some Classical Theorems.- 1.1. The Riesz-Thorin Theorem.- 1.2. Applications of the Riesz-Thorin Theorem.- 1.3. The Marcinkiewicz Theorem.- 1.4. An Application of the Marcinkiewicz Theorem.- 1.5. Two Classical Approximation Results.- 1.6. Exercises.- 1.7. Notes and Comment.- 2. General Properties of Interpolation Spaces.- 2.1. Categories and Functors.- 2.2. Normed Vector Spaces.- 2.3. Couples of Spaces.- 2.4. Definition of Interpolation Spaces.- 2.5. The Aronszajn-Gagliardo Theorem.- 2.6. A Necessary Condition for Interpolation.- 2.7. A Duality Theorem.- 2.8. Exercises.- 2.9. Notes and Comment.- 3. The Real Interpolation Method.- 3.1. The K-Method.- 3.2. The J-Method.- 3.3. The Equivalence Theorem.- 3.4. Simple Properties of ??, q.- 3.5. The Reiteration Theorem.- 3.6. A Formula for the K-Functional.- 3.7. The Duality Theorem.- 3.8. A Compactness Theorem.- 3.9. An Extremal Property of the Real Method.- 3.10. Quasi-Normed Abelian Groups.- 3.11. The Real Interpolation Method for Quasi-Normed Abelian Groups.- 3.12. Some Other Equivalent Real Interpolation Methods.- 3.13. Exercises.- 3.14. Notes and Comment.- 4. The Complex Interpolation Method.- 4.1. Definition of the Complex Method.- 4.2. Simple Properties of ?[?].- 4.3. The Equivalence Theorem.- 4.4. Multilinear Interpolation.- 4.5. The Duality Theorem.- 4.6. The Reiteration Theorem.- 4.7. On the Connection with the Real Method.- 4.8. Exercises.- 4.9. Notes and Comment.- 5. Interpolation of Lp-Spaces.- 5.1. Interpolation of Lp-Spaces: the Complex Method.- 5.2. Interpolation of Lp-Spaces: the Real Method.- 5.3. Interpolation of Lorentz Spaces.- 5.4. Interpolation of Lp-Spaces with Change of Measure: p0 = p1.- 5.5. Interpolation of Lp-Spaces with Change of Measure: p0 ? p1.- 5.6. Interpolation of Lp-Spaces of Vector-Valued Sequences.- 5.7. Exercises.- 5.8. Notes and Comment.- 6. Interpolation of Sobolev and Besov Spaces.- 6.1. Fourier Multipliers.- 6.2. Definition of the Sobolev and Besov Spaces.- 6.3. The Homogeneous Sobolev and Besov Spaces.- 6.4. Interpolation of Sobolev and Besov Spaces.- 6.5. An Embedding Theorem.- 6.6. A Trace Theorem.- 6.7. Interpolation of Semi-Groups of Operators.- 6.8. Exercises.- 6.9. Notes and Comment.- 7. Applications to Approximation Theory.- 7.1. Approximation Spaces.- 7.2. Approximation of Functions.- 7.3. Approximation of Operators.- 7.4. Approximation by Difference Operators.- 7.5. Exercises.- 7.6. Notes and Comment.- References.- List of Symbols.

4,025 citations

Journal Article
TL;DR: The relationship between 'learning' in adaptive layered networks and the fitting of data with high dimensional surfaces is discussed, leading naturally to a picture of 'generalization in terms of interpolation between known data points and suggests a rational approach to the theory of such networks.
Abstract: : The relationship between 'learning' in adaptive layered networks and the fitting of data with high dimensional surfaces is discussed. This leads naturally to a picture of 'generalization in terms of interpolation between known data points and suggests a rational approach to the theory of such networks. A class of adaptive networks is identified which makes the interpolation scheme explicit. This class has the property that learning is equivalent to the solution of a set of linear equations. These networks thus represent nonlinear relationships while having a guaranteed learning rule. Great Britain.

3,538 citations

Book
01 Mar 1964

3,431 citations

Book
01 Jan 1972
TL;DR: In this paper, a monograph describes and analyzes some practical methods for finding approximate zeros and minima of functions, and some of these methods can be used to find approximate minima as well.
Abstract: This monograph describes and analyzes some practical methods for finding approximate zeros and minima of functions.

2,477 citations

Journal ArticleDOI
TL;DR: Simulation results demonstrate that the new interpolation algorithm substantially improves the subjective quality of the interpolated images over conventional linear interpolation.
Abstract: This paper proposes an edge-directed interpolation algorithm for natural images. The basic idea is to first estimate local covariance coefficients from a low-resolution image and then use these covariance estimates to adapt the interpolation at a higher resolution based on the geometric duality between the low-resolution covariance and the high-resolution covariance. The edge-directed property of covariance-based adaptation attributes to its capability of tuning the interpolation coefficients to match an arbitrarily oriented step edge. A hybrid approach of switching between bilinear interpolation and covariance-based adaptive interpolation is proposed to reduce the overall computational complexity. Two important applications of the new interpolation algorithm are studied: resolution enhancement of grayscale images and reconstruction of color images from CCD samples. Simulation results demonstrate that our new interpolation algorithm substantially improves the subjective quality of the interpolated images over conventional linear interpolation.

1,933 citations

Network Information
Related Topics (5)
Nonlinear system
208.1K papers, 4M citations
79% related
Image processing
229.9K papers, 3.5M citations
79% related
Boundary value problem
145.3K papers, 2.7M citations
79% related
Differential equation
88K papers, 2M citations
79% related
Finite element method
178.6K papers, 3M citations
79% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202333
202279
2021117
2020138
2019146
2018170