Topic

# Linear model

About: Linear model is a(n) research topic. Over the lifetime, 19008 publication(s) have been published within this topic receiving 1054229 citation(s). The topic is also known as: linear models.

...read more

##### Papers

More filters

•

01 Jan 1983-

TL;DR: In this Section: 1. Multivariate Statistics: Why? and 2. A Guide to Statistical Techniques: Using the Book Research Questions and Associated Techniques.

...read more

Abstract: In this Section: 1. Brief Table of Contents 2. Full Table of Contents 1. BRIEF TABLE OF CONTENTS Chapter 1 Introduction Chapter 2 A Guide to Statistical Techniques: Using the Book Chapter 3 Review of Univariate and Bivariate Statistics Chapter 4 Cleaning Up Your Act: Screening Data Prior to Analysis Chapter 5 Multiple Regression Chapter 6 Analysis of Covariance Chapter 7 Multivariate Analysis of Variance and Covariance Chapter 8 Profile Analysis: The Multivariate Approach to Repeated Measures Chapter 9 Discriminant Analysis Chapter 10 Logistic Regression Chapter 11 Survival/Failure Analysis Chapter 12 Canonical Correlation Chapter 13 Principal Components and Factor Analysis Chapter 14 Structural Equation Modeling Chapter 15 Multilevel Linear Modeling Chapter 16 Multiway Frequency Analysis 2. FULL TABLE OF CONTENTS Chapter 1: Introduction Multivariate Statistics: Why? Some Useful Definitions Linear Combinations of Variables Number and Nature of Variables to Include Statistical Power Data Appropriate for Multivariate Statistics Organization of the Book Chapter 2: A Guide to Statistical Techniques: Using the Book Research Questions and Associated Techniques Some Further Comparisons A Decision Tree Technique Chapters Preliminary Check of the Data Chapter 3: Review of Univariate and Bivariate Statistics Hypothesis Testing Analysis of Variance Parameter Estimation Effect Size Bivariate Statistics: Correlation and Regression. Chi-Square Analysis Chapter 4: Cleaning Up Your Act: Screening Data Prior to Analysis Important Issues in Data Screening Complete Examples of Data Screening Chapter 5: Multiple Regression General Purpose and Description Kinds of Research Questions Limitations to Regression Analyses Fundamental Equations for Multiple Regression Major Types of Multiple Regression Some Important Issues. Complete Examples of Regression Analysis Comparison of Programs Chapter 6: Analysis of Covariance General Purpose and Description Kinds of Research Questions Limitations to Analysis of Covariance Fundamental Equations for Analysis of Covariance Some Important Issues Complete Example of Analysis of Covariance Comparison of Programs Chapter 7: Multivariate Analysis of Variance and Covariance General Purpose and Description Kinds of Research Questions Limitations to Multivariate Analysis of Variance and Covariance Fundamental Equations for Multivariate Analysis of Variance and Covariance Some Important Issues Complete Examples of Multivariate Analysis of Variance and Covariance Comparison of Programs Chapter 8: Profile Analysis: The Multivariate Approach to Repeated Measures General Purpose and Description Kinds of Research Questions Limitations to Profile Analysis Fundamental Equations for Profile Analysis Some Important Issues Complete Examples of Profile Analysis Comparison of Programs Chapter 9: Discriminant Analysis General Purpose and Description Kinds of Research Questions Limitations to Discriminant Analysis Fundamental Equations for Discriminant Analysis Types of Discriminant Analysis Some Important Issues Comparison of Programs Chapter 10: Logistic Regression General Purpose and Description Kinds of Research Questions Limitations to Logistic Regression Analysis Fundamental Equations for Logistic Regression Types of Logistic Regression Some Important Issues Complete Examples of Logistic Regression Comparison of Programs Chapter 11: Survival/Failure Analysis General Purpose and Description Kinds of Research Questions Limitations to Survival Analysis Fundamental Equations for Survival Analysis Types of Survival Analysis Some Important Issues Complete Example of Survival Analysis Comparison of Programs Chapter 12: Canonical Correlation General Purpose and Description Kinds of Research Questions Limitations Fundamental Equations for Canonical Correlation Some Important Issues Complete Example of Canonical Correlation Comparison of Programs Chapter 13: Principal Components and Factor Analysis General Purpose and Description Kinds of Research Questions Limitations Fundamental Equations for Factor Analysis Major Types of Factor Analysis Some Important Issues Complete Example of FA Comparison of Programs Chapter 14: Structural Equation Modeling General Purpose and Description Kinds of Research Questions Limitations to Structural Equation Modeling Fundamental Equations for Structural Equations Modeling Some Important Issues Complete Examples of Structural Equation Modeling Analysis. Comparison of Programs Chapter 15: Multilevel Linear Modeling General Purpose and Description Kinds of Research Questions Limitations to Multilevel Linear Modeling Fundamental Equations Types of MLM Some Important Issues Complete Example of MLM Comparison of Programs Chapter 16: Multiway Frequency Analysis General Purpose and Description Kinds of Research Questions Limitations to Multiway Frequency Analysis Fundamental Equations for Multiway Frequency Analysis Some Important Issues Complete Example of Multiway Frequency Analysis Comparison of Programs

...read more

53,012 citations

••

TL;DR: A new method for estimation in linear models called the lasso, which minimizes the residual sum of squares subject to the sum of the absolute value of the coefficients being less than a constant, is proposed.

...read more

Abstract: SUMMARY We propose a new method for estimation in linear models. The 'lasso' minimizes the residual sum of squares subject to the sum of the absolute value of the coefficients being less than a constant. Because of the nature of this constraint it tends to produce some coefficients that are exactly 0 and hence gives interpretable models. Our simulation studies suggest that the lasso enjoys some of the favourable properties of both subset selection and ridge regression. It produces interpretable models like subset selection and exhibits the stability of ridge regression. There is also an interesting relationship with recent work in adaptive function estimation by Donoho and Johnstone. The lasso idea is quite general and can be applied in a variety of statistical models: extensions to generalized regression models and tree-based models are briefly described.

...read more

36,018 citations

•

01 Jan 1983-

Abstract: The technique of iterative weighted linear regression can be used to obtain maximum likelihood estimates of the parameters with observations distributed according to some exponential family and systematic effects that can be made linear by a suitable transformation. A generalization of the analysis of variance is given for these models using log- likelihoods. These generalized linear models are illustrated by examples relating to four distributions; the Normal, Binomial (probit analysis, etc.), Poisson (contingency tables) and gamma (variance components).

...read more

23,204 citations

•

17 Aug 2006-

TL;DR: Probability Distributions, linear models for Regression, Linear Models for Classification, Neural Networks, Graphical Models, Mixture Models and EM, Sampling Methods, Continuous Latent Variables, Sequential Data are studied.

...read more

Abstract: Probability Distributions.- Linear Models for Regression.- Linear Models for Classification.- Neural Networks.- Kernel Methods.- Sparse Kernel Machines.- Graphical Models.- Mixture Models and EM.- Approximate Inference.- Sampling Methods.- Continuous Latent Variables.- Sequential Data.- Combining Models.

...read more

22,762 citations

••

Abstract: SUMMARY This paper proposes an extension of generalized linear models to the analysis of longitudinal data. We introduce a class of estimating equations that give consistent estimates of the regression parameters and of their variance under mild assumptions about the time dependence. The estimating equations are derived without specifying the joint distribution of a subject's observations yet they reduce to the score equations for multivariate Gaussian outcomes. Asymptotic theory is presented for the general class of estimators. Specific cases in which we assume independence, m-dependence and exchangeable correlation structures from each subject are discussed. Efficiency of the proposed estimators in two simple situations is considered. The approach is closely related to quasi-likelih ood. Some key ironh: Estimating equation; Generalized linear model; Longitudinal data; Quasi-likelihood; Repeated measures.

...read more

16,152 citations