Topic

# Linear subspace

About: Linear subspace is a research topic. Over the lifetime, 11970 publications have been published within this topic receiving 258571 citations. The topic is also known as: vector subspace.

##### Papers published on a yearly basis

##### Papers

More filters

•

[...]

TL;DR: It is possible to design n=O(Nlog(m)) nonadaptive measurements allowing reconstruction with accuracy comparable to that attainable with direct knowledge of the N most important coefficients, and a good approximation to those N important coefficients is extracted from the n measurements by solving a linear program-Basis Pursuit in signal processing.

Abstract: Suppose x is an unknown vector in Ropfm (a digital image or signal); we plan to measure n general linear functionals of x and then reconstruct. If x is known to be compressible by transform coding with a known transform, and we reconstruct via the nonlinear procedure defined here, the number of measurements n can be dramatically smaller than the size m. Thus, certain natural classes of images with m pixels need only n=O(m1/4log5/2(m)) nonadaptive nonpixel samples for faithful recovery, as opposed to the usual m pixel samples. More specifically, suppose x has a sparse representation in some orthonormal basis (e.g., wavelet, Fourier) or tight frame (e.g., curvelet, Gabor)-so the coefficients belong to an lscrp ball for 0

18,609 citations

••

Yale University

^{1}TL;DR: A face recognition algorithm which is insensitive to large variation in lighting direction and facial expression is developed, based on Fisher's linear discriminant and produces well separated classes in a low-dimensional subspace, even under severe variations in lighting and facial expressions.

Abstract: We develop a face recognition algorithm which is insensitive to large variation in lighting direction and facial expression. Taking a pattern classification approach, we consider each pixel in an image as a coordinate in a high-dimensional space. We take advantage of the observation that the images of a particular face, under varying illumination but fixed pose, lie in a 3D linear subspace of the high dimensional image space-if the face is a Lambertian surface without shadowing. However, since faces are not truly Lambertian surfaces and do indeed produce self-shadowing, images will deviate from this linear subspace. Rather than explicitly modeling this deviation, we linearly project the image into a subspace in a manner which discounts those regions of the face with large deviation. Our projection method is based on Fisher's linear discriminant and produces well separated classes in a low-dimensional subspace, even under severe variation in lighting and facial expressions. The eigenface technique, another method based on linearly projecting the image space to a low dimensional subspace, has similar computational requirements. Yet, extensive experimental results demonstrate that the proposed "Fisherface" method has error rates that are lower than those of the eigenface technique for tests on the Harvard and Yale face databases.

11,674 citations

••

TL;DR: In this paper, it is shown that principal component analysis (PCA) is a powerful tool for coping with structural instability in dynamic systems, and it is proposed that the first step in model reduction is to apply the mechanics of minimal realization using these working subspaces.

Abstract: Kalman's minimal realization theory involves geometric objects (controllable, unobservable subspaces) which are subject to structural instability. Specifically, arbitrarily small perturbations in a model may cause a change in the dimensions of the associated subspaces. This situation is manifested in computational difficulties which arise in attempts to apply textbook algorithms for computing a minimal realization. Structural instability associated with geometric theories is not unique to control; it arises in the theory of linear equations as well. In this setting, the computational problems have been studied for decades and excellent tools have been developed for coping with the situation. One of the main goals of this paper is to call attention to principal component analysis (Hotelling, 1933), and an algorithm (Golub and Reinsch, 1970) for computing the singular value decompositon of a matrix. Together they form a powerful tool for coping with structural instability in dynamic systems. As developed in this paper, principal component analysis is a technique for analyzing signals. (Singular value decomposition provides the computational machinery.) For this reason, Kalman's minimal realization theory is recast in terms of responses to injected signals. Application of the signal analysis to controllability and observability leads to a coordinate system in which the "internally balanced" model has special properties. For asymptotically stable systems, this yields working approximations of X_{c}, X_{\bar{o}} , the controllable and unobservable subspaces. It is proposed that a natural first step in model reduction is to apply the mechanics of minimal realization using these working subspaces.

5,134 citations

••

Shanghai Jiao Tong University

^{1}, Peking University^{2}, National University of Singapore^{3}, Columbia University^{4}, Microsoft^{5}TL;DR: It is shown that the convex program associated with LRR solves the subspace clustering problem in the following sense: When the data is clean, LRR exactly recovers the true subspace structures; when the data are contaminated by outliers, it is proved that under certain conditions LRR can exactly recover the row space of the original data.

Abstract: In this paper, we address the subspace clustering problem. Given a set of data samples (vectors) approximately drawn from a union of multiple subspaces, our goal is to cluster the samples into their respective subspaces and remove possible outliers as well. To this end, we propose a novel objective function named Low-Rank Representation (LRR), which seeks the lowest rank representation among all the candidates that can represent the data samples as linear combinations of the bases in a given dictionary. It is shown that the convex program associated with LRR solves the subspace clustering problem in the following sense: When the data is clean, we prove that LRR exactly recovers the true subspace structures; when the data are contaminated by outliers, we prove that under certain conditions LRR can exactly recover the row space of the original data and detect the outlier as well; for data corrupted by arbitrary sparse errors, LRR can also approximately recover the row space with theoretical guarantees. Since the subspace membership is provably determined by the row space, these further imply that LRR can perform robust subspace clustering and error correction in an efficient and effective way.

3,085 citations

••

TL;DR: Analysis of extended molecular dynamics simulations of lysozyme in vacuo and in aqueous solution reveals that it is possible to separate the configurational space into two subspace: an “essential” subspace containing only a few degrees of freedom and the remaining space in which the motion has a narrow Gaussian distribution and which can be considered as “physically constrained.”

Abstract: Analysis of extended molecular dynamics (MD) simulations of lysozyme in vacuo and in aqueous solution reveals that it is possible to separate the configurational space into two subspaces: (1) an "essential" subspace containing only a few degrees of freedom in which anharmonic motion occurs that comprises most of the positional fluctuations; and (2) the remaining space in which the motion has a narrow Gaussian distribution and which can be considered as "physically constrained." If overall translation and rotation are eliminated, the two spaces can be constructed by a simple linear transformation in Cartesian coordinate space, which remains valid over several hundred picoseconds. The transformation follows from the covariance matrix of the positional deviations. The essential degrees of freedom seem to describe motions which are relevant for the function of the protein, while the physically constrained subspace merely describes irrelevant local fluctuations. The near-constraint behavior of the latter subspace allows the separation of equations of motion and promises the possibility of investigating independently the essential space and performing dynamic simulations only in this reduced space.

2,896 citations