scispace - formally typeset
Search or ask a question

Showing papers on "Link-state routing protocol published in 2003"


Journal ArticleDOI
11 May 2003
TL;DR: This work proposes security goals for routing in sensor networks, shows how attacks against ad-hoc and peer-to-peer networks can be adapted into powerful attacks against sensors, and introduces two classes of novel attacks against sensor networks sinkholes and HELLO floods.
Abstract: We consider routing security in wireless sensor networks. Many sensor network routing protocols have been proposed, but none of them have been designed with security as a goal. We propose security goals for routing in sensor networks, show how attacks against ad-hoc and peer-to-peer networks can be adapted into powerful attacks against sensor networks, introduce two classes of novel attacks against sensor networks sinkholes and HELLO floods, and analyze the security of all the major sensor network routing protocols. We describe crippling attacks against all of them and suggest countermeasures and design considerations. This is the first such analysis of secure routing in sensor networks.

2,946 citations


Journal ArticleDOI
TL;DR: A probabilistic routing protocol for intermittently connected networks where there is no guarantee that a fully connected path between source and destination exist at any time, rendering traditional routing protocols unable to deliver messages between hosts.
Abstract: We consider the problem of routing in intermittently connected networks. In such networks there is no guarantee that a fully connected path between source and destination exist at any time, rendering traditional routing protocols unable to deliver messages between hosts. We propose a probabilistic routing protocol for such networks.

2,530 citations


Proceedings ArticleDOI
05 Nov 2003
TL;DR: This work study and evaluate link estimator, neighborhood table management, and reliable routing protocol techniques, and narrow the design space through evaluations on large-scale, high-level simulations to 50-node, in-depth empirical experiments.
Abstract: The dynamic and lossy nature of wireless communication poses major challenges to reliable, self-organizing multihop networks. These non-ideal characteristics are more problematic with the primitive, low-power radio transceivers found in sensor networks, and raise new issues that routing protocols must address. Link connectivity statistics should be captured dynamically through an efficient yet adaptive link estimator and routing decisions should exploit such connectivity statistics to achieve reliability. Link status and routing information must be maintained in a neighborhood table with constant space regardless of cell density. We study and evaluate link estimator, neighborhood table management, and reliable routing protocol techniques. We focus on a many-to-one, periodic data collection workload. We narrow the design space through evaluations on large-scale, high-level simulations to 50-node, in-depth empirical experiments. The most effective solution uses a simple time averaged EWMA estimator, frequency based table management, and cost-based routing.

1,735 citations


Proceedings ArticleDOI
09 Jul 2003
TL;DR: A new, general mechanism, called packet leashes, is presented for detecting and thus defending against wormhole attacks, and a specific protocol is presented, called TIK, that implements leashes.
Abstract: As mobile ad hoc network applications are deployed, security emerges as a central requirement. In this paper, we introduce the wormhole attack, a severe attack in ad hoc networks that is particularly challenging to defend against. The wormhole attack is possible even if the attacker has not compromised any hosts, and even if all communication provides authenticity and confidentiality. In the wormhole attack, an attacker records packets (or bits) at one location in the network, tunnels them (possibly selectively) to another location, and retransmits them there into the network. The wormhole attack can form a serious threat in wireless networks, especially against many ad hoc network routing protocols and location-based wireless security systems. For example, most existing ad hoc network routing protocols, without some mechanism to defend against the wormhole attack, would be unable to find routes longer than one or two hops, severely disrupting communication. We present a new, general mechanism, called packet leashes, for detecting and thus defending against wormhole attacks, and we present a specific protocol, called TIK, that implements leashes.

1,667 citations


Proceedings ArticleDOI
15 Sep 2003
TL;DR: A novel randomized network coding approach for robust, distributed transmission and compression of information in networks is presented, and its advantages over routing-based approaches are demonstrated.
Abstract: A novel randomized network coding approach for robust, distributed transmission and compression of information in networks is presented, and its advantages over routing-based approaches is demonstrated.

1,171 citations


Proceedings ArticleDOI
09 Jul 2003
TL;DR: This framework aims to evaluate the impact of different mobility models on the performance of MANET routing protocols, and attempts to decompose the routing protocols into mechanistic "building blocks" to gain a deeper insight into the performance variations across protocols in the face of mobility.
Abstract: A mobile ad hoc network (MANET) is a collection of wireless mobile nodes forming a temporary network without using any existing infrastructure. Since not many MANETs are currently deployed, research in this area is mostly simulation based. Random waypoint is the commonly used mobility model in these simulations. Random waypoint is a simple model that may be applicable to some scenarios. However, we believe that it is not sufficient to capture some important mobility characteristics of scenarios in which MANETs may be deployed. Our framework aims to evaluate the impact of different mobility models on the performance of MANET routing protocols. We propose various protocol independent metrics to capture interesting mobility characteristics, including spatial and temporal dependence and geographic restrictions. In addition, a rich set of parameterized mobility models is introduced including random waypoint, group mobility, freeway and Manhattan models. Based on these models several 'test-suite' scenarios are chosen carefully to span the metric space. We demonstrate the utility of our test-suite by evaluating various MANET routing protocols, including DSR, AODV and DSDV. Our results show that the protocol performance may vary drastically across mobility models and performance rankings of protocols may vary with the mobility models used. This effect can be explained by the interaction of the mobility characteristics with the connectivity graph properties. Finally, we attempt to decompose the routing protocols into mechanistic "building blocks" to gain a deeper insight into the performance variations across protocols in the face of mobility.

1,035 citations


Proceedings ArticleDOI
09 Jun 2003
TL;DR: This paper analyzes a position-based routing approach that makes use of the navigational systems of vehicles and compares this approach with non-position-based ad hoc routing strategies (dynamic source routing and ad-hoc on-demand distance vector routing).
Abstract: Routing of data in a vehicular ad hoc network is a challenging task due to the high dynamics of such a network. Recently, it was shown for the case of highway traffic that position-based routing approaches can very well deal with the high mobility of network nodes. However, baseline position-based routing has difficulties to handle two-dimensional scenarios with obstacles (buildings) and voids as it is the case for city scenarios. In this paper we analyze a position-based routing approach that makes use of the navigational systems of vehicles. By means of simulation we compare this approach with non-position-based ad hoc routing strategies (dynamic source routing and ad-hoc on-demand distance vector routing). The simulation makes use of highly realistic vehicle movement patterns derived from Daimler-Chrysler's Videlio traffic simulator. While DSR's performance is limited due to problems with scalability and handling mobility, both AODV and the position-based approach show good performances with the position-based approach outperforming AODV.

912 citations


Proceedings ArticleDOI
14 Sep 2003
TL;DR: This paper defines a scalable coordinate-based routing algorithm that does not rely on location information, and thus can be used in a wide variety of ad hoc and sensornet environments.
Abstract: For many years, scalable routing for wireless communication systems was a compelling but elusive goal. Recently, several routing algorithms that exploit geographic information (e.g. GPSR) have been proposed to achieve this goal. These algorithms refer to nodes by their location, not address, and use those coordinates to route greedily, when possible, towards the destination. However, there are many situations where location information is not available at the nodes, and so geographic methods cannot be used. In this paper we define a scalable coordinate-based routing algorithm that does not rely on location information, and thus can be used in a wide variety of ad hoc and sensornet environments.

898 citations


Journal ArticleDOI
01 Jul 2003
TL;DR: The Secure Efficient Ad hoc Distance vector routing protocol (SEAD) is designed and evaluated, a secure ad hoc network routing protocol based on the design of the Destination-Sequenced Distance-Vector routing protocol that performs well over the range of scenarios and is robust against multiple uncoordinated attackers creating incorrect routing state in any other node.
Abstract: An ad hoc network is a collection of wireless computers (nodes), communicating among themselves over possibly multihop paths, without the help of any infrastructure such as base stations or access points. Although many previous ad hoc network routing protocols have been based in part on distance vector approaches, they have generally assumed a trusted environment. In this paper, we design and evaluate the Secure Efficient Ad hoc Distance vector routing protocol (SEAD), a secure ad hoc network routing protocol based on the design of the Destination-Sequenced Distance-Vector routing protocol. In order to support use with nodes of limited CPU processing capability, and to guard against Denial-of-Service attacks in which an attacker attempts to cause other nodes to consume excess network bandwidth or processing time, we use efficient one-way hash functions and do not use asymmetric cryptographic operations in the protocol. SEAD performs well over the range of scenarios we tested, and is robust against multiple uncoordinated attackers creating incorrect routing state in any other node, even in spite of any active attackers or compromised nodes in the network.

844 citations


Proceedings ArticleDOI
13 Jul 2003
TL;DR: A new geometric routing algorithm is proposed which is outstandingly efficient on practical average-case networks, however is also in theory asymptotically worst-case optimal and the formerly necessary assumption that the distance between network nodes may not fall below a constant value is dropped.
Abstract: All too often a seemingly insurmountable divide between theory and practice can be witnessed. In this paper we try to contribute to narrowing this gap in the field of ad-hoc routing. In particular we consider two aspects: We propose a new geometric routing algorithm which is outstandingly efficient on practical average-case networks, however is also in theory asymptotically worst-case optimal. On the other hand we are able to drop the formerly necessary assumption that the distance between network nodes may not fall below a constant value, an assumption that cannot be maintained for practical networks. Abandoning this assumption we identify from a theoretical point of view two fundamentamentally different classes of cost metrics for routing in ad-hoc networks.

772 citations


Proceedings ArticleDOI
19 Sep 2003
TL;DR: The rushing attack is presented, a new attack that results in denial-of-service when used against all previous on-demand ad~hoc network routing protocols, and Rushing Attack Prevention (RAP) is developed, a generic defense against the rushing attack for on- demand protocols.
Abstract: In an ad hoc network, mobile computers (or nodes) cooperate to forward packets for each other, allowing nodes to communicate beyond their direct wireless transmission range. Many of the proposed routing protocols for ad hoc networks operate in an on-demand fashion, as on-demand routing protocols have been shown to often have lower overhead and faster reaction time than other types of routing based on periodic (proactive) mechanisms. Significant attention recently has been devoted to developing secure routing protocols for ad~hoc networks, including a number of secure on-demand routing protocols, that defend against a variety of possible attacks on network routing. In this paper, we present the rushing attack, a new attack that results in denial-of-service when used against all previous on-demand ad~hoc network routing protocols. For example, DSR, AODV, and secure protocols based on them, such as Ariadne, ARAN, and SAODV, are unable to discover routes longer than two hops when subject to this attack. This attack is also particularly damaging because it can be performed by a relatively weak attacker. We analyze why previous protocols fail under this attack. We then develop Rushing Attack Prevention (RAP), a generic defense against the rushing attack for on-demand protocols. RAP incurs no cost unless the underlying protocol fails to find a working route, and it provides provable security properties even against the strongest rushing attackers.

Proceedings ArticleDOI
09 Jul 2003
TL;DR: A modified version of the popular AODV protocol that allows us to discover multiple node-disjoint paths from a source to a destination and shows that the probability of establishing a reliable path between a random source and destination pair increases considerably even with a low percentage of reliable nodes.
Abstract: Mobile ad hoc networks consist of nodes that are often vulnerable to failure. As such, it is important to provide redundancy in terms of providing multiple node-disjoint paths from a source to a destination. We first propose a modified version of the popular AODV protocol that allows us to discover multiple node-disjoint paths from a source to a destination. We find that very few of such paths can be found. Furthermore, as distances between sources and destinations increase, bottlenecks inevitably occur and thus, the possibility of finding multiple paths is considerably reduced. We conclude that it is necessary to place what we call reliable nodes (in terms of both being robust to failure and being secure) in the network for efficient operations. We propose a deployment strategy that determines the positions and the trajectories of these reliable nodes such that we can achieve a framework for reliably routing information. We define a notion of a reliable path which is made up of multiple segments, each of which either entirely consists of reliable nodes, or contains a preset number of multiple paths between the end points of the segment. We show that the probability of establishing a reliable path between a random source and destination pair increases considerably even with a low percentage of reliable nodes when we control their positions and trajectories in accordance with our algorithm.

Journal ArticleDOI
01 Nov 2003
TL;DR: This framework aims to evaluate the impact of different mobility models on the performance of MANET routing protocols, and attempts to decompose the reactive routing protocols into mechanistic ‘‘building blocks’’ to gain a deeper insight into the performance variations across protocols in the face of mobility.
Abstract: A Mobile Ad hoc Network (MANET) is a collection of wireless mobile nodes forming a temporary network without using any existing infrastructure. Since not many MANETs are currently deployed, research in this area is mostly simulation based. Random Waypoint is the commonly used mobility model in these simulations. Random Waypoint is a simple model that may be applicable to some scenarios. However, we believe that it is not sufficient to capture some important mobility characteristics of scenarios in which MANETs may be deployed. Our framework aims to evaluate the impact of different mobility models on the performance of MANET routing protocols. We propose various protocol independent metrics to capture interesting mobility characteristics, including spatial and temporal dependence and geographic restrictions. In addition, a rich set of parameterized mobility models is introduced including Random Waypoint, Group Mobility, Freeway and Manhattan models. Based on these models several test-suite scenarios are chosen carefully to span the metric space. We demonstrate the utility of our test-suite by evaluating various MANET routing protocols, including DSR, AODV and DSDV. Our results show that the protocol performance may vary drastically across mobility models and performance rankings of protocols may vary with the mobility models used. This effect can be explained by the interaction of the mobility characteristics with the connectivity graph properties. Finally, we attempt to decompose the reactive routing protocols into mechanistic ‘‘building blocks’’ to gain a deeper insight into the performance variations across protocols in the face of mobility. � 2003 Elsevier B.V. All rights reserved.

Proceedings ArticleDOI
01 Jun 2003
TL;DR: GOAFR is the first ad-hoc algorithm to be both asymptotically optimal and average-case efficient and study a dozen of routing algorithms and shows that GOAFR outperforms other prominent algorithms, such as GPSR or AFR.
Abstract: In this paper we present GOAFR, a new geometric ad-hoc routing algorithm combining greedy and face routing. We evaluate this algorithm by both rigorous analysis and comprehensive simulation. GOAFR is the first ad-hoc algorithm to be both asymptotically optimal and average-case efficient. For our simulations we identify a network density range critical for any routing algorithm. We study a dozen of routing algorithms and show that GOAFR outperforms other prominent algorithms, such as GPSR or AFR.

Proceedings ArticleDOI
19 May 2003
TL;DR: This paper proposes an energy-aware QoS routing protocol, which finds a least-cost, delay-constrained path for real-time data in terms of link cost that captures nodes' energy reserve, transmission energy, error rate and other communication parameters.
Abstract: Recent advances in wireless sensor networks have led to many new routing protocols specifically designed for sensor networks. Almost all of these routing protocols considered energy efficiency as the ultimate objective in order to maximize the whole network lifetime. However, the introduction of video and imaging sensors has posed additional challenges. Transmission of video and imaging data requires both energy and QoS aware routing in order to ensure efficient usage of the sensors and effective access to the gathered measurements. In this paper, we propose an energy-aware QoS routing protocol, which can also run efficiently with best-effort traffic. The protocol finds a least-cost, delay-constrained path for real-time data in terms of link cost that captures nodes' energy reserve, transmission energy, error rate and other communication parameters. Moreover, throughput for non-real-time data is maximized by adjusting the service rate for both real-time and non-realtime data at sensor nodes. Simulation results have demonstrated the effectiveness of our approach.

Proceedings ArticleDOI
14 Sep 2003
TL;DR: Ad hoc-VCG is proposed, a reactive routing protocol that achieves the design objectives of truthfulness and cost-efficiency and guarantees that routing is done along the most cost-efficient path by paying to the intermediate nodes a premium over their actual costs for forwarding data packets.
Abstract: We introduce a game-theoretic setting for routing in a mobile ad hoc network that consists of greedy, selfish agents who accept payments for forwarding data for other agents if the payments cover their individual costs incurred by forwarding data. In this setting, we propose Ad hoc-VCG, a reactive routing protocol that achieves the design objectives of truthfulness (i.e., it is in the agents' best interest to reveal their true costs for forwarding data) and cost-efficiency (i.e., it guarantees that routing is done along the most cost-efficient path) in a game-theoretic sense by paying to the intermediate nodes a premium over their actual costs for forwarding data packets. We show that the total overpayment (i.e., the sum of all premiums paid) is relatively small by giving a theoretical upper bound and by providing experimental evidence. Our routing protocol implements a variation of the well-known mechanism by Vickrey, Clarke, and Groves in a mobile network setting. Finally, we analyze a very natural routing protocol that is an adaptation of the Packet Purse Model [8] with auctions in our setting and show that, unfortunately, it does not achieve cost-efficiency or truthfulness.

Proceedings ArticleDOI
27 Jan 2003
TL;DR: The proposed secure link state routing protocol (SLSP) provides secure proactive topology discovery, which can be beneficial to network operation in a number of ways.
Abstract: Secure operation of the routing protocol is one of the major challenges to be met for the proliferation of the mobile ad hoc networking (MANET) paradigm. Nevertheless, security enhancements have been proposed mostly for reactive MANET protocols. The proposed secure link state routing protocol (SLSP) provides secure proactive topology discovery, which can be beneficial to network operation in a number of ways. SLSP can be employed as a stand-alone protocol, or fit naturally into a hybrid routing framework, when combined with a reactive protocol. SLSP is robust against individual attackers, is capable of adjusting its scope between local and network-wide topology discovery, and is capable of operating in networks of frequently changing topology and membership.

Journal ArticleDOI
01 Jan 2003
TL;DR: Experimental evidence from two wireless test-beds shows that there are usually multiple minimum hop-count paths, many of which have poor throughput, and suggests that more attention be paid to link quality when choosing ad hoc routes.
Abstract: Existing wireless ad hoc routing protocols typically find routes with the minimum hop-count. This paper presents experimental evidence from two wireless test-beds which shows that there are usually multiple minimum hop-count paths, many of which have poor throughput. As a result, minimum-hop-count routing often chooses routes that have significantly less capacity than the best paths that exist in the network. Much of the reason for this is that many of the radio links between nodes have loss rates low enough that the routing protocol is willing to use them, but high enough that much of the capacity is consumed by retransmissions. These observations suggest that more attention be paid to link quality when choosing ad hoc routes; the paper presents measured link characteristics likely to be useful in devising a better path quality metric.

01 Jan 2003
TL;DR: In this paper, it is shown that in order to find the routes that give energy efficiency, a set of partial differential equations similar to the Maxwell's equations in the electrostatic theory can be solved.
Abstract: In this paper we introduce a new scheme for the purpose of routing in the wireless sensor networks. Our proposed approach is for the case in which many sensors need to collect data and send it to a central node. We will show that in order to find the routes that give energy efficiency, we can solve a set of partial differential equations similar to the Maxwell’s equations in the electrostatic theory. These partial differential equations give the geographical paths from each sensor to the destination. In order to find the actual routes, we approximate the found paths by a sequence of wireless links each between a pair of sensors. Our simulation results show considerable improvement in the life of the network compared to the traditional shortest path approach.

Proceedings ArticleDOI
14 Sep 2003
TL;DR: The approach that is used is quite flexible and is a promising method to handle more sophisticated interference conditions, multiple channels, multiple antennas, and routing with diversity requirements.
Abstract: This paper considers the problem of determining the achievable rates in multi-hop wireless networks. We consider the problem of jointly routing the flows and scheduling transmissions to achieve a given rate vector. We develop tight necessary and sufficient conditions for the achievability of the rate vector. We develop efficient and easy to implement Fully Polynomial Time Approximation Schemes for solving the routing problem. The scheduling problem is a solved as a graph edge-coloring problem. We show that this approach guarantees that the solution obtained is within 67% of the optimal solution in the worst case and, in practice, is typically within about 80% of the optimal solution. The approach that we use is quite flexible and is a promising method to handle more sophisticated interference conditions, multiple channels, multiple antennas, and routing with diversity requirements.

Proceedings ArticleDOI
09 Jul 2003
TL;DR: A theoretical framework is considered and a routing algorithm is proposed which exploits the patterns in the mobility of nodes to provide guarantees on the delay and the throughput achieved by the algorithm is only a poly-logarithmic factor off from the optimal.
Abstract: Network throughput and packet delay are two important parameters in the design and the evaluation of routing protocols for ad-hoc networks. While mobility has been shown to increase the capacity of a network, it is not clear whether the delay can be kept low without trading off the throughput. We consider a theoretical framework and propose a routing algorithm which exploits the patterns in the mobility of nodes to provide guarantees on the delay. Moreover, the throughput achieved by the algorithm is only a poly-logarithmic factor off from the optimal. The algorithm itself is fairly simple. In order to analyze its feasibility and the performance guarantee, we used various techniques of probabilistic analysis of algorithms. The approach taken in this paper could be applied to the analyses of some other routing algorithms for mobile ad hoc networks proposed in the literature.

Proceedings ArticleDOI
David Applegate1, Edith Cohen1
25 Aug 2003
TL;DR: It is possible to obtain a robust routing that guarantees a nearly optimal utilization with a fairly limited knowledge of the applicable traffic demands, according to a diverse collection of ISP networks.
Abstract: Intra-domain traffic engineering can significantly enhance the performance of large IP backbone networks. Two important components of traffic engineering are understanding the traffic demandsand configuring the routing protocols. These two components are inter-linked, as it is widely believed that an accurate view of traffic is important for optimizing the configuration of routing protocols and through that, the utilization of the network.This basic premise, however, never seems to have been quantified --How important is accurate knowledge of traffic demands for obtaining good utilization of the network? Since traffic demand values are dynamic and illusive, is it possible to obtain a routing that is "robust" to variations in demands? Armed with enhanced recent algorithmic tools we explore these questions on a diverse collection of ISP networks. We arrive at a surprising conclusion: it is possible to obtain a robust routing that guarantees a nearly optimal utilization with a fairly limited knowledge of the applicable traffic demands.

Proceedings ArticleDOI
19 Sep 2003
TL;DR: It is proved that in Quasi Unit Disk Graphs flooding is an asymptotically message-optimal routing technique, and the geometric routing algorithm being more efficient above all in dense networks, and classic geometric routing is possible with the same performance guarantees as for Unit Diskgraphs if d = 1/v2.
Abstract: In this paper we study a model for ad-hoc networks close enough to reality as to represent existing networks, being at the same time concise enough to promote strong theoretical results. The Quasi Unit Disk Graph model contains all edges shorter than a parameter d between 0 and 1 and no edges longer than 1.We show that .in comparison to the cost known on Unit Disk Graphs .the complexity results in this model contain the additional factor 1 /d2. We prove that in Quasi Unit Disk Graphs flooding is an asymptotically message-optimal routing technique, provide a geometric routing algorithm being more efficient above all in dense networks, and show that classic geometric routing is possible with the same performance guarantees as for Unit Disk Graphs if d = 1/v2.

Journal Article
TL;DR: In this paper, the authors analyze and compare reactive single-path and multipath routing with load balance mechanisms in ad hoc networks, in terms of overhead, traffic distribution and connection throughput.
Abstract: Research on multipath routing protocols to provide improved throughput and route resilience as compared with single-path routing has been explored in details in the context of wired networks. However, multipath routing mechanism has not been explored thoroughly in the domain of ad hoc networks. In this paper, we analyze and compare reactive single-path and multipath routing with load balance mechanisms in ad hoc networks, in terms of overhead, traffic distribution and connection throughput. The results reveals that in comparison with general single-path routing protocol, multipath routing mechanism creates more overheads but provides better performance in congestion and capacity provided that the route length is within a certain upper bound which is derivable. The analytical results are further confirmed by simulation.

Proceedings ArticleDOI
09 Jul 2003
TL;DR: Simulation studies using the proposed extensible on-demand power management framework with the dynamic source routing protocol show a reduction in energy consumption near 50% when compared to a network without power management under both long-lived CBR traffic and on-off traffic loads, with comparable throughput and latency.
Abstract: Battery power is an important resource in ad hoc networks. It has been observed that in ad hoc networks, energy consumption does not reflect the communication activities in the network. Many existing energy conservation protocols based on electing a routing backbone for global connectivity are oblivious to traffic characteristics. In this paper, we propose an extensible on-demand power management framework for ad hoc networks that adapts to traffic load. Nodes maintain soft-state timers that determine power management transitions. By monitoring routing control messages and data transmission, these timers are set and refreshed on-demand. Nodes that are not involved in data delivery may go to sleep as supported by the MAC protocol. This soft state is aggregated across multiple flows and its maintenance requires no additional out-of-band messages. We implement a prototype of our framework in the ns-2 simulator that uses the IEEE 802.11 MAC protocol. Simulation studies using our scheme with the dynamic source routing protocol show a reduction in energy consumption near 50% when compared to a network without power management under both long-lived CBR traffic and on-off traffic loads, with comparable throughput and latency. Preliminary results also show that it outperforms existing routing backbone election approaches.

Proceedings ArticleDOI
01 Jun 2003
TL;DR: This paper describes application-specific protocols built on top of SHARP for minimizing packet overhead, bounding loss rate, and controlling jitter, and shows that the resulting protocols outperform the purely proactive and purely reactive protocols across a wide range of network characteristics.
Abstract: A central challenge in ad hoc networks is the design of routing protocols that can adapt their behavior to frequent and rapid changes in the network The performance of proactive and reactive routing protocols varies with network characteristics, and one protocol may outperform the other in different network conditions The optimal routing strategy depends on the underlying network topology, rate of change, and traffic pattern, and varies dynamically This paper introduces the Sharp Hybrid Adaptive Routing Protocol (SHARP), which automatically finds the balance point between proactive and reactive routing by adjusting the degree to which route information is propagated proactively versus the degree to which it needs to be discovered reactively SHARP enables each node to use a different application-specific performance metric to control the adaptation of the routing layer This paper describes application-specific protocols built on top of SHARP for minimizing packet overhead, bounding loss rate, and controlling jitter Simulation studies show that the resulting protocols outperform the purely proactive and purely reactive protocols across a wide range of network characteristics

Proceedings ArticleDOI
09 Jul 2003
TL;DR: The results reveals that in comparison with general single-path routing protocol, multipath routing mechanism creates more overheads but provides better performance in congestion and capacity provided that the route length is within a certain upper bound which is derivable.
Abstract: Research on multipath routing protocols to provide improved throughput and route resilience as compared with single-path routing has been explored in details in the context of wired networks. However, multipath routing mechanism has not been explored thoroughly in the domain of ad hoc networks. In this paper, we analyze and compare reactive single-path and multipath routing with load balance mechanisms in ad hoc networks, in terms of overhead, traffic distribution and connection throughput. The results reveals that in comparison with general single-path routing protocol, multipath routing mechanism creates more overheads but provides better performance in congestion and capacity provided that the route length is within a certain upper bound which is derivable. The analytical results are further confirmed by simulation.

Proceedings ArticleDOI
25 Aug 2003
TL;DR: This paper uses a game-theoretic approach to investigate the performance of selfish routing in Internet-like environments based on realistic topologies and traffic demands in simulations and shows that in contrast to theoretical worst cases, selfish routing achieves close to optimal average latency in such environments.
Abstract: A recent trend in routing research is to avoid inefficiencies in network-level routing by allowing hosts to either choose routes themselves (e.g., source routing) or use overlay routing networks (e.g., Detour or RON). Such approaches result in selfish routing, because routing decisions are no longer based on system-wide criteria but are instead designed to optimize host-based or overlay-based metrics. A series of theoretical results showing that selfish routing can result in suboptimal system behavior have cast doubts on this approach. In this paper, we use a game-theoretic approach to investigate the performance of selfish routing in Internet-like environments. We focus on intra-domain network environments and use realistic topologies and traffic demands in our simulations. We show that in contrast to theoretical worst cases, selfish routing achieves close to optimal average latency in such environments. However, such performance benefit comes at the expense of significantly increased congestion on certain links. Moreover, the adaptive nature of selfish overlays can significantly reduce the effectiveness of traffic engineering by making network traffic less predictable.

Proceedings ArticleDOI
20 Mar 2003
TL;DR: This paper presents a hybrid scheme that uses techniques such as TTL scoping of agent advertisements, eavesdropping and caching agent and advertisements to combine the advantages of proactive and reactive approaches to providing connectivity.
Abstract: Mobile ad hoc networks are autonomous, infrastructureless networks that support multihop communication through IP routing. This paper examines the use of mobile IP in order to provide global Internet connectivity to ad hoc networks that use an on-demand routing protocol. We present a hybrid scheme that uses techniques such as TTL scoping of agent advertisements, eavesdropping and caching agent and advertisements to combine the advantages of proactive and reactive approaches to providing connectivity. We present simulation results to show that our approach achieves excellent connectivity while keeping overhead costs low.

Proceedings ArticleDOI
09 Jul 2003
TL;DR: A new algorithm for routing of messages in ad-hoc networks where the nodes are energy-constrained achieves a logarithmic competitive ratio and performs better than previously proposed algorithms for other suggested metrics such as network lifetime maximization.
Abstract: A new algorithm for routing of messages in ad-hoc networks where the nodes are energy-constrained is presented. The routing objective is to maximize the total number of messages that can be successfully sent over the network without knowing any information regarding future message arrivals or message generation rates. From a theoretical perspective, we show that if admission control of messages is permitted, then the worst-case performance of our algorithm is within a factor of O(log(network size)) of the best achievable solution. In other words, our algorithm achieves a logarithmic competitive ratio. Our approach provides sound theoretical backing for several observations that have been made by previous researchers. From a practical perspective, we show by extensive simulations that the performance of the algorithm is very good even in the absence of admission control (the admission control being necessary only to prove the competitive ratio result), and that it also performs better than previously proposed algorithms for other suggested metrics such as network lifetime maximization. Our algorithm uses a single shortest path computation, and is amenable to efficient implementation. We also evaluate by simulations the performance impact of inexact knowledge of residual battery energy, and the impact of energy drain due to dissemination of residual energy information.