scispace - formally typeset
Search or ask a question
Topic

Liquid fuel

About: Liquid fuel is a research topic. Over the lifetime, 12568 publications have been published within this topic receiving 122820 citations. The topic is also known as: liquid fuels.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors reviewed scientific and technical developments in applications of bio-oil to date and concluded with some suggestions for research and strategic developments, and concluded that biooil is a renewable liquid fuel and can also be used for production of chemicals.
Abstract: Fast pyrolysis of biomass is one of the most recent renewable energy processes to have been introduced. It offers the advantages of a liquid product, bio-oil that can be readily stored and transported. Bio-oil is a renewable liquid fuel and can also be used for production of chemicals. Fast pyrolysis has now achieved a commercial success for production of chemicals and is being actively developed for producing liquid fuels. Bio-oils have been successfully tested in engines, turbines, and boilers, and have been upgraded to high-quality hydrocarbon fuels, although at a presently unacceptable energetic and financial cost. The paper critically reviews scientific and technical developments in applications of bio-oil to date and concludes with some suggestions for research and strategic developments.

2,672 citations

Journal ArticleDOI
21 Jun 2007-Nature
TL;DR: This catalytic strategy for the production of 2,5-dimethylfuran from fructose (a carbohydrate obtained directly from biomass or by the isomerization of glucose) for use as a liquid transportation fuel may diminish the authors' reliance on petroleum.
Abstract: With petrol prices on the rise, biofuels are big news these days. For applications in the transportation sector, perhaps the best known liquid biofuel is biomass-derived ethanol. But ethanol has its limitations: it is highly volatile, absorbs water and has a low energy density. A team from the University of Wisconsin-Madison has developed a two-step catalytic process that can convert fructose into a potentially better liquid biofuel, 2,5-dimethylfuran (DMF). This has 40%-higher energy density and a higher boiling point than ethanol, and is not water soluble. Fructose can be made directly from biomass or from glucose and although there's some work needed before DMF production can be made commercially viable, this new catalytic process looks promising. Diminishing fossil fuel reserves and growing concerns about global warming indicate that sustainable sources of energy are needed in the near future. For fuels to be useful in the transportation sector, they must have specific physical properties that allow for efficient distribution, storage and combustion; these properties are currently fulfilled by non-renewable petroleum-derived liquid fuels. Ethanol, the only renewable liquid fuel currently produced in large quantities, suffers from several limitations, including low energy density, high volatility, and contamination by the absorption of water from the atmosphere. Here we present a catalytic strategy for the production of 2,5-dimethylfuran from fructose (a carbohydrate obtained directly from biomass or by the isomerization of glucose) for use as a liquid transportation fuel. Compared to ethanol, 2,5-dimethylfuran has a higher energy density (by 40 per cent), a higher boiling point (by 20 K), and is not soluble in water. This catalytic strategy creates a route for transforming abundant renewable biomass resources1,2 into a liquid fuel suitable for the transportation sector, and may diminish our reliance on petroleum.

2,033 citations

Journal ArticleDOI
24 Apr 2014-Nature
TL;DR: The results demonstrate the ability to change the intrinsic catalytic properties of Cu for this notoriously difficult reaction by growing interconnected nanocrystallites from the constrained environment of an oxide lattice, demonstrating the feasibility of a two-step conversion of CO2 to liquid fuel that could be powered by renewable electricity.
Abstract: The electrochemical conversion of CO and H2O into liquid fuel is made feasible at modest potentials with the use of oxide-derived nanocystalline Cu as the catalyst. Renewable electricity is often produced when it is not needed. If the surplus could be harnessed to drive the conversion of CO2 and water into liquid fuel, the energy would not go to waste and a use would be found for CO2 produced by carbon capture. All this requires efficient electrocatalysts that reduce CO2 not only to CO, but also further into fuel chemicals. Copper does this but with low efficiency and selectivity. Christina Li et al. now show that the intrinsic catalytic properties of copper can be improved by producing it from its oxide as interconnected nanocrystallites. Their enhanced catalyst generates primarily ethanol, demonstrating that a two-step conversion of CO2 to liquid fuel powered by renewable electricity might be possible. The electrochemical conversion of CO2 and H2O into liquid fuel is ideal for high-density renewable energy storage and could provide an incentive for CO2 capture. However, efficient electrocatalysts for reducing CO2 and its derivatives into a desirable fuel1,2,3 are not available at present. Although many catalysts4,5,6,7,8,9,10,11 can reduce CO2 to carbon monoxide (CO), liquid fuel synthesis requires that CO is reduced further, using H2O as a H+ source. Copper (Cu) is the only known material with an appreciable CO electroreduction activity, but in bulk form its efficiency and selectivity for liquid fuel are far too low for practical use. In particular, H2O reduction to H2 outcompetes CO reduction on Cu electrodes unless extreme overpotentials are applied, at which point gaseous hydrocarbons are the major CO reduction products12,13. Here we show that nanocrystalline Cu prepared from Cu2O (‘oxide-derived Cu’) produces multi-carbon oxygenates (ethanol, acetate and n-propanol) with up to 57% Faraday efficiency at modest potentials (–0.25 volts to –0.5 volts versus the reversible hydrogen electrode) in CO-saturated alkaline H2O. By comparison, when prepared by traditional vapour condensation, Cu nanoparticles with an average crystallite size similar to that of oxide-derived copper produce nearly exclusive H2 (96% Faraday efficiency) under identical conditions. Our results demonstrate the ability to change the intrinsic catalytic properties of Cu for this notoriously difficult reaction by growing interconnected nanocrystallites from the constrained environment of an oxide lattice. The selectivity for oxygenates, with ethanol as the major product, demonstrates the feasibility of a two-step conversion of CO2 to liquid fuel that could be powered by renewable electricity.

1,256 citations

Journal ArticleDOI
TL;DR: In this article, a review of new studies on pyrolysis of biomass to produce fuels and chemical feedstocks is presented, where a number of biomass species, varying from woody and herbaceous biomass to municipal solid waste, food processing residues and industrial wastes, were subjected to different pyropolysis conditions to obtain liquid, gas and solid products.

1,085 citations

Journal ArticleDOI
TL;DR: A comprehensive review of the advances made over the past two decades in this area is provided in this article, where various swirl injector configurations and related flow characteristics, including vortex breakdown, precessing vortex core, large-scale coherent structures, and liquid fuel atomization and spray formation are discussed.

1,048 citations


Network Information
Related Topics (5)
Combustion
172.3K papers, 1.9M citations
91% related
Heat transfer
181.7K papers, 2.9M citations
82% related
Internal combustion engine
130.5K papers, 1M citations
80% related
Heat exchanger
184.2K papers, 1M citations
79% related
Laminar flow
56K papers, 1.2M citations
79% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202369
2022141
2021220
2020260
2019328
2018328