scispace - formally typeset
Search or ask a question
Topic

Liquid metal

About: Liquid metal is a research topic. Over the lifetime, 6947 publications have been published within this topic receiving 77785 citations. The topic is also known as: liquid alloy & liquid metal alloy.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a plane solid-liquid interface has been found when Cu-Ni alloys were immersed in liquid Bi at 800°C since the solubilities of Cu and Ni in liquid bi are about equal.

65 citations

Journal ArticleDOI
TL;DR: A novel method for controlling the directional flow of EGaIn liquid metal in complex microfluidic networks by simply applying a low voltage to the metal is demonstrated and employed like a 'valve' to direct the pathway chosen by the metal without mechanical moving parts.
Abstract: Liquid metals based on gallium, such as eutectic gallium indium (EGaIn) and Galinstan, have been integrated as static components in microfluidic systems for a wide range of applications including soft electrodes, pumps, and stretchable electronics. However, there is also a possibility to continuously pump liquid metal into microchannels to create shape reconfigurable metallic structures. Enabling this concept necessitates a simple method to control dynamically the path the metal takes through branched microchannels with multiple outlets. This paper demonstrates a novel method for controlling the directional flow of EGaIn liquid metal in complex microfluidic networks by simply applying a low voltage to the metal. According to the polarity of the voltage applied between the inlet and an outlet, two distinct mechanisms can occur. The voltage can lower the interfacial tension of the metal via electrocapillarity to facilitate the flow of the metal towards outlets containing counter electrodes. Alternatively, the voltage can drive surface oxidation of the metal to form a mechanical impediment that redirects the movement of the metal towards alternative pathways. Thus, the method can be employed like a 'valve' to direct the pathway chosen by the metal without mechanical moving parts. The paper elucidates the operating mechanisms of this valving system and demonstrates proof-of-concept control over the flow of liquid metal towards single or multiple directions simultaneously. This method provides a simple route to direct the flow of liquid metal for applications in microfluidics, optics, electronics, and microelectromechanical systems.

64 citations

Journal ArticleDOI
TL;DR: In this paper, a dynamic spectral-method-based computer model of the induction skull melting (ISM) process was developed in close collaboration with the University of Birmingham, where extensive melting trials have been undertaken.
Abstract: Induction skull melting (ISM) is a widely used process for melting certain alloys that are very reactive in the molten condition, such as those based on Ti, TiAl, and Zr, prior to casting components such as turbine blades, engine valves, turbocharger rotors, and medical prostheses. A major research project has been undertaken with the specific target of developing improved techniques for casting TiAl components. The aims include increasing the superheat in the molten metal to allow thin section components to be cast, improving the quality of the cast components and increasing the energy efficiency of the process. As part of this, the University of Greenwich (United Kingdom) has developed a dynamic, spectral-method-based computer model of the ISM process in close collaboration with the University of Birmingham (United Kingdom), where extensive melting trials have been undertaken. This article describes in detail the numerical model that encompasses the coupled influences of turbulent flow, heat transfer with phase change, and AC and DC magneto-hydrodynamics (MHD) in a time-varying liquid metal envelope. Associated experimental measurements on Al, Ni, and TiAl alloys have been used to obtain data to validate the model. Measured data include the true root-meansquare (RMS) current applied to the induction coil, the heat transfer from the molten metal to the crucible cooling water, and the shape of the semi-levitated molten metal. Examples are given of the use of the model in optimizing the design of ISM furnaces by investigating the effects of geometric and operational parameter changes.

64 citations

Journal ArticleDOI
TL;DR: Numerical modelling showed that acoustic shielding attenuates pressure far from the sonotrode and it is prominent in the transparent liquids studied but less so in aluminium, suggesting that aluminium behaviour is different.

64 citations

Journal ArticleDOI
TL;DR: In this article, the authors reported sliding of micro liquid-metal droplets by electrostatic actuation for MEMS applications, bi-stable switching in particular, using both traditional optical microscope and confocal laser imaging.
Abstract: This paper reports sliding of micro liquid-metal droplets by electrostatic actuation for MEMS applications, bi-stable switching in particular. Basic theory concerning droplets on a plane solid surface is exposed followed by experimental study. Being a major parameter in the modeling of sliding droplets, the contact angle has been characterized in the case of mercury on an oxidized silicon wafer. The method used involves both traditional optical microscope and confocal laser imaging. The contact angle is found to be around 137/spl deg/ with an associated standard deviation of 8/spl deg/. The sample preparation is detailed. The droplets deposition method is based on selective condensation of mercury vapor on gold dots acting as preferred nucleation sites. This technique provides control of droplet dimensions and locations and is suitable for batch fabrication. Experimental study of electrostatic actuation coupled with finite-element method (FEM) analysis is described, leading to the determination of the sliding condition parameter, which represents a contact angle hysteresis of about 6/spl deg/. Experimental results also confirm the proportionality between minimum driving force and droplet dimension. Finally, a design optimization methodology is proposed, based on the use of finite-element model simulations.

64 citations


Network Information
Related Topics (5)
Heat transfer
181.7K papers, 2.9M citations
82% related
Thin film
275.5K papers, 4.5M citations
80% related
Oxide
213.4K papers, 3.6M citations
80% related
Amorphous solid
117K papers, 2.2M citations
80% related
Hydrogen
132.2K papers, 2.5M citations
79% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023233
2022413
2021259
2020340
2019399
2018369