scispace - formally typeset
Search or ask a question
Topic

Liquid metal

About: Liquid metal is a research topic. Over the lifetime, 6947 publications have been published within this topic receiving 77785 citations. The topic is also known as: liquid alloy & liquid metal alloy.


Papers
More filters
Journal ArticleDOI
TL;DR: This study pioneers the technology of pulsed laser irradiation in liquid from a solid target to liquid, and yields liquid ternary nano-alloys that are laborious to obtain via wet-chemistry synthesis, and can pave a new way of synthesizing multinary supranano alloys for advanced optoelectronic applications.
Abstract: Creating colloids of liquid metal with tailored dimensions has been of technical significance in nano-electronics while a challenge remains for generating supranano (<10 nm) liquid metal to unravel the mystery of their unconventional functionalities. Present study pioneers the technology of pulsed laser irradiation in liquid from a solid target to liquid, and yields liquid ternary nano-alloys that are laborious to obtain via wet-chemistry synthesis. Herein, the significant role of the supranano liquid metal on mediating the electrons at the grain boundaries of perovskite films, which are of significance to influence the carriers recombination and hysteresis in perovskite solar cells, is revealed. Such embedding of supranano liquid metal in perovskite films leads to a cesium-based ternary perovskite solar cell with stabilized power output of 21.32% at maximum power point tracing. This study can pave a new way of synthesizing multinary supranano alloys for advanced optoelectronic applications.

42 citations

Journal ArticleDOI
TL;DR: In this paper, an experimental study on the particle size distribution in the cross-section of the spray and its evolution during the process has confirmed the unsteadiness of the process.

42 citations

Journal ArticleDOI
TL;DR: In this article, an approximate solution of the Clapeyron-Clausius equation is applied to the present problem, which permits calculations of metal surface temperature versus incident light intensity I 0.
Abstract: The experimental results of our studies of metal evaporation under powerful optical radiation are presented. The theory of this phenomenon based on a liquid-vapor phase transition is developed. An approximate solution of the Clapeyron-Clausius equation is applied to the present problem. The method permits calculations of metal surface temperature versus incident light intensity I 0 . When a certain critical intensity is exceeded ( I_{md} \sim 10^{7}-10^{8} W .cm-2) a new effect is shown to arise due to disappearance of the metallic properties of the target. The new effect is a "transparency wave" in whose front a liquid metal turns into a liquid dielectric. For I_{0} > I_{md} it is the surface "transparent" (dielectric) layer that is evaporated. Its temperature is no longer raised and it remains below a critical value. This layer is separated from the metal by the transparency wave front, which propagates towards the interior of the metal. The transparency wave causes some other effects to arise, such as a sharp drop of the reflectivity from the metal surface, an essential change in the dependence of the observed evaporation front speed on I 0 , and, finally, occurrence of a maximum on the curve of specific recoil impulse versus I 0 . These other effects may be used to identify the transparency wave. The experimental results support some corollaries of our theoretical model. The vapor dynamics of metal evaporation under powerful millisecond optical radiation are investigated. Vapor heating near the target under laser light has been observed. The initial conditions of vapor motion are studied. From the gas-dynamic measurements the mass flow of the gas phase j 1 is calculated. The dependence of j 1 upon the incident light intensity is indicative of the fact that the metal surface has attained the temperature T = T_{md} , which corresponds to the liquid metal-liquid dielectric transition.

42 citations

Journal ArticleDOI
TL;DR: In this article, a novel and robust anode material called CuGaS2 hexagonal nanoplates with a lateral size of 2-3 μm and thickness of 180-200 nm was synthesized by a vapor thermal transformation from the oxide counterpart CuGaO2.
Abstract: The practical application of batteries in electric vehicles (EVs) and hybrid electric vehicles (HEVs) is hindered by the narrow operating temperature range due to the degradation of the solid–electrolyte interface (SEI) layer at high temperature and poor ion/electron diffusion kinetics at low temperature. Herein, we firstly report CuGaS2 hexagonal nanoplates as a novel and robust anode material working in a wide temperature range. CuGaS2 nanoplates with a lateral size of 2–3 μm and thickness of 180–200 nm have been successfully synthesized by a vapor thermal transformation from the oxide counterpart CuGaO2. The thermal workability of the as-synthesized CuGaS2 benefits from a synergistic effect including the high conductivity of copper and the self-healing nature of liquid metal gallium. Room temperature CuGaS2 as a lithium ion battery anode electrode exhibits a high reversible capacity over 521 mA h g−1 after 600 cycles at a high current density of 5 A g−1. Furthermore, as the temperature is lifted to 318 K, the CuGaS2 electrode exhibits a stable and reversible capacity over 784 mA h g−1 at a high current density of 0.5 A g−1; even at the low temperature of 268 K, a reversible capacity over 407 mA h g−1 can be realized, which is much superior to that of the commercial graphite anode.

41 citations

Journal ArticleDOI
TL;DR: In this paper, a four-step approach is described in which the heat transfer in a liquid metal flow inside a heated tube is analyzed using a RANS approach and then compared with some of the empirical correlations.

41 citations


Network Information
Related Topics (5)
Heat transfer
181.7K papers, 2.9M citations
82% related
Thin film
275.5K papers, 4.5M citations
80% related
Oxide
213.4K papers, 3.6M citations
80% related
Amorphous solid
117K papers, 2.2M citations
80% related
Hydrogen
132.2K papers, 2.5M citations
79% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023233
2022413
2021259
2020340
2019399
2018369