scispace - formally typeset
Search or ask a question
Topic

Liquid paraffin

About: Liquid paraffin is a research topic. Over the lifetime, 6185 publications have been published within this topic receiving 52956 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: A method enabling the preparation of microcapsules with a liquid core in one step using two enzymatic reactions, both of which consume H2O2 competitively is developed and could be versatile for preparing the micro Capsules from the other polymer derivatives of carboxymetylcellulose and gelatin.
Abstract: The usefulness of cell-enclosing microcapsules in biomedical and biopharmaceutical fields is widely recognized. In this study, we developed a method enabling the preparation of microcapsules with a liquid core in one step using two enzymatic reactions, both of which consume H2 O2 competitively. The microcapsule membrane prepared in this study is composed of the hydrogel obtained from an alginate derivative possessing phenolic hydroxyl moieties (Alg-Ph). The cell-enclosing microcapsules with a hollow core were obtained by extruding an aqueous solution of Alg-Ph containing horseradish peroxidase (HRP), catalase, and cells into a co-flowing stream of liquid paraffin containing H2 O2 . Formation of the microcapsule membrane progressed from the surface of the droplets through HRP-catalyzed cross-linking of Ph moieties by consuming H2 O2 supplied from the ambient liquid paraffin. A hollow core structure was induced by catalase-catalyzed decomposition of H2 O2 resulting in the center region being at an insufficient level of H2 O2 . The viability of HeLa cells was 93.1% immediately after encapsulation in the microcapsules with about 250 µm diameter obtained from an aqueous solution of 2.5% (w/v) Alg-Ph, 100 units mL(-1) HRP, 9.1 × 10(4) units mL(-1) catalase. The enclosed cells grew much faster than those in the microparticles with a solid core. In addition, the thickness of microcapsule membrane could be controlled by changing the concentrations of HRP and catalase in the range of 13-48 µm. The proposed method could be versatile for preparing the microcapsules from the other polymer derivatives of carboxymetylcellulose and gelatin.

22 citations

Journal ArticleDOI
TL;DR: In this paper, the phase change materials (PCM) melting characteristics under different centrifugal accelerations were explored, and an experimental apparatus was developed on a centrifuge, and the evolution of the solid-liquid interface and temperature distribution of composite PCM was obtained.

22 citations

Journal ArticleDOI
S. Ohgaki, Y. Tsunoda1
TL;DR: In this article, the growth characteristics of positive impulse surface discharges using a pointplane electrode geometry in oil have been studied using schlieren optics and a special probe was used for the measurement of the voltage drop across the streamer.
Abstract: The growth characteristics of positive impulse surface discharges using a point-plane electrode geometry in oil have been studied using schlieren optics and a special probe was used for the measurement of the voltage drop across the streamer. The experiments are made in growth lengths up to, approximately 4 cm. The growth characteristics are discussed in conjunction with the probe measurements. We examine mechanisms for the continuous reduction of the potential gradient in the streamer channel as the tip grows, and then propose a new model for streamer growth, adding some findings on light emission in the channel.

22 citations

Journal ArticleDOI
TL;DR: In this article, three cellulose esters were synthesized by both conventional co-reactant reaction (CCR) and mechanical activation-assisted co- reactant reaction(MACR) methods, and corresponding nano-cellulose esrs were prepared by high pressure homogenization to comparatively investigate their tribological properties as lubricant additives in liquid paraffin base oil.
Abstract: Three cellulose esters, cellulose acetate-butyrate, cellulose acetate-octanoate, and cellulose acetate-laurate, were synthesized by both conventional co-reactant reaction (CCR) and mechanical activation-assisted co-reactant reaction (MACR) methods, and the corresponding nano-cellulose esters were prepared by high pressure homogenization to comparatively investigate their tribological properties as lubricant additives in liquid paraffin base oil. MACR method was more effective than CCR method for preparing long chain cellulose esters, and the MACR-prepared cellulose esters were more easily homogenized to smaller nanoparticles. Tribological testing indicated that anti-wear and load-carrying properties of the lubricants were significantly enhanced with nano-cellulose esters as additives compared to those of pure liquid paraffin, especially the MACR-prepared long chain cellulose esters. The wear scar diameter on worn surface of the steel balls reduced with the increase in degree of substitution (DS) and chain length of long chain substituents and the decrease in size dimension of nano-cellulose esters. The polar ester carbonyl groups, unesterified hydroxyl groups, and long hydrocarbon alkyl chains in nano-cellulose esters could lead to the formation of a film layer in the steel/steel contact surfaces for protecting the metals from friction and wear, which gave the lubricants with good anti-wear and load-carrying properties. The nano-cellulose esters with high DS and long chain substituents prepared by MACR technology as ecofriendly additives exhibited better lubricating ability. Nano-cellulose esters with high DS of long chain substituents prepared by mechanical activation-assisted co-reactant reaction technology used as ecofriendly lubricant additives in base oil showed good anti-wear and load-carrying properties, ascribing to the formation of a film layer in the steel/steel contact surfaces for protecting the metals from friction and wear.

22 citations

Journal ArticleDOI
15 Feb 2020
TL;DR: The present study describes the ex-situ production of a biosurfactant by Pseudomonas sp.
Abstract: The present study describes the ex-situ production of a biosurfactant by Pseudomonas sp. TMB2 for its potential application in enhancing oil recovery. The physicochemical parameters such as temperature and pH were optimized as 30 °C and 7.2, respectively, for their maximum laboratory scale production in mineral salt medium containing glucose and sodium nitrate as best carbon and nitrogen sources. The surface activity of the resulting culture broth was declined from 71.9 to 33.4 mN/m having the highest emulsification activity against kerosene oil. The extracted biosurfactant was characterized chemically as glycolipid by Fourier-transform infrared spectroscopy and 1H and 13C nuclear magnetic resonance spectroscopy analyses. The presence of mono-rhamnolipids (Rha-C8:2, Rha-C10, Rha-C10-C10, and Rha-C10-C12:1) and di-rhamnolipids (Rha-Rha-C12-C10, Rha-Rha-C10-C10, and Rha-Rha-C10-C12:1) congeners were determined by liquid chromatography-mass spectroscopy analysis. The thermostability and degradation pattern of the candidate biosurfactant were tested by thermogravimetry assay and differential scanning calorimetry studies for its suitability in ex-situ oil recovery technology. The rhamnolipid based slug, prepared in 4000 ppm brine solution reduced the interfacial tension between liquid paraffin oil and aqueous solution to 0.8 mN/m from 39.1 mN/m at critical micelle concentration of 120 mg/L. The flooding test was performed using conventional core plugs belonging to oil producing horizons of Upper Assam Basin and recovered 16.7% of original oil in place after secondary brine flooding with microscopic displacement efficiency of 27.11%.

22 citations


Network Information
Related Topics (5)
Particle size
69.8K papers, 1.7M citations
74% related
Drug delivery
49.7K papers, 1.8M citations
72% related
Nanoparticle
85.9K papers, 2.6M citations
71% related
Aqueous solution
189.5K papers, 3.4M citations
70% related
Electrolyte
124.6K papers, 2.3M citations
70% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20239
202216
202168
2020146
2019277
2018417