scispace - formally typeset
Search or ask a question
Topic

Lithium niobate

About: Lithium niobate is a research topic. Over the lifetime, 11939 publications have been published within this topic receiving 171585 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: The theory of quasi-phase-matched second-harmonic generation in both the space domain and the wave vector mismatch domain is presented in this paper, where various types of errors in the periodicity of these structures are analyzed to find their effects on the conversion efficiency and on the shape of the tuning curve.
Abstract: The theory of quasi-phase-matched second-harmonic generation is presented in both the space domain and the wave vector mismatch domain. Departures from ideal quasi-phase matching in periodicity, wavelength, angle of propagation, and temperature are examined to determine the tuning properties and acceptance bandwidths for second-harmonic generation in periodic structures. Numerical examples are tabulated for periodically poled lithium niobate. Various types of errors in the periodicity of these structures are then analyzed to find their effects on the conversion efficiency and on the shape of the tuning curve. This analysis is useful for establishing fabrication tolerances for practical quasi-phase-matched devices. A method of designing structures having desired phase-matching tuning curve shapes is also described. The method makes use of varying domain lengths to establish a varying effective nonlinear coefficient along the interaction length. >

2,137 citations

Journal ArticleDOI
TL;DR: In this article, the important tensor physical properties and their mathematical descriptions are compiled and presented, including the essential features of the structure of lithium niobate, including its hexagonal and rhombohedral unit cells, and the principal (Cartesian) axes used in the description of the anisotropic properties are specified relative to the crystal structure.
Abstract: Ferroelectric lithium niobate (LiNbO3) is widely used in integrated and guided-wave optics because of its favorable optical, piezoelectric, electro-optic, elastic, photoelastic, and photorefractive properties. However, detailed summaries of its pertinent physical properties and crystal structure are not readily available. In this tutorial paper, the important tensor physical properties and their mathematical descriptions are compiled and presented. The essential features of the structure of lithium niobate, including its hexagonal and rhombohedral unit cells, are illustrated and the principal (Cartesian) axes used in the description of the anisotropic properties are specified relative to the crystal structure. Errors in property coefficient values and structure information that have been propagated in the literature are corrected.

1,516 citations

Book
01 Jan 1991
TL;DR: Ferroelectric tungsten - bronze type niobate crystals as discussed by the authors is a type of ferroelectric crystal material that can be used to construct piezoelectric composites.
Abstract: 1. Introduction - Characteristics of ferroelectrics. 2. Methods for measuring physical properties of ferroelectric materials. 3. Perovskite-type ferroelectrics (Part I). 4. Perovskite-type ferroelectrics (Part II). 5. Lithium niobate and lithium tantalate. 6. Ferroelectric tungsten - bronze type niobate crystals. 7. KDP family, TGS family and other water-soluble ferroelectric crystals. 8. Other ferroelectric crystal materials. 9. Organic ferroelectric materials and piezoelectric composites.

1,516 citations

Journal ArticleDOI
24 Sep 2018-Nature
TL;DR: Monolithically integrated lithium niobate electro-optic modulators that feature a CMOS-compatible drive voltage, support data rates up to 210 gigabits per second and show an on-chip optical loss of less than 0.5 decibels are demonstrated.
Abstract: Electro-optic modulators translate high-speed electronic signals into the optical domain and are critical components in modern telecommunication networks1,2 and microwave-photonic systems3,4. They are also expected to be building blocks for emerging applications such as quantum photonics5,6 and non-reciprocal optics7,8. All of these applications require chip-scale electro-optic modulators that operate at voltages compatible with complementary metal–oxide–semiconductor (CMOS) technology, have ultra-high electro-optic bandwidths and feature very low optical losses. Integrated modulator platforms based on materials such as silicon, indium phosphide or polymers have not yet been able to meet these requirements simultaneously because of the intrinsic limitations of the materials used. On the other hand, lithium niobate electro-optic modulators, the workhorse of the optoelectronic industry for decades9, have been challenging to integrate on-chip because of difficulties in microstructuring lithium niobate. The current generation of lithium niobate modulators are bulky, expensive, limited in bandwidth and require high drive voltages, and thus are unable to reach the full potential of the material. Here we overcome these limitations and demonstrate monolithically integrated lithium niobate electro-optic modulators that feature a CMOS-compatible drive voltage, support data rates up to 210 gigabits per second and show an on-chip optical loss of less than 0.5 decibels. We achieve this by engineering the microwave and photonic circuits to achieve high electro-optical efficiencies, ultra-low optical losses and group-velocity matching simultaneously. Our scalable modulator devices could provide cost-effective, low-power and ultra-high-speed solutions for next-generation optical communication networks and microwave photonic systems. Furthermore, our approach could lead to large-scale ultra-low-loss photonic circuits that are reconfigurable on a picosecond timescale, enabling a wide range of quantum and classical applications5,10,11 including feed-forward photonic quantum computation. Chip-scale lithium niobate electro-optic modulators that rapidly convert electrical to optical signals and use CMOS-compatible voltages could prove useful in optical communication networks, microwave photonic systems and photonic computation.

1,358 citations

Journal ArticleDOI
TL;DR: In this article, the authors review progress in quasi-phase-matched optical parametric oscillators in bulk periodically poled LiNbO3, and demonstrate an oscillation threshold as low as 0.012 mJ with a Q-switched pump laser and pumping at greater than ten times threshold without damage.
Abstract: We review progress in quasi-phase-matched optical parametric oscillators in bulk periodically poled LiNbO3. Using the electric-field poling process, we can reliably fabricate 0.5-mm-thick crystals with uniform domain structures over a 15-mm length. Periodically poled material retains the low-loss and bulk power handling properties of single-domain LiNbO3, and quasi phase matching permits noncritical phase matching with d33, the highest-valued nonlinear coefficient. Optical parametric oscillators pumped by 1.064-μm pulsed Nd:YAG lasers have been operated over the wavelength range 1.4–4 μm with tuning by temperature or by quasi-phase-matched period. We have shown an oscillation threshold as low as 0.012 mJ with a Q-switched pump laser and pumping at greater than ten times threshold without damage. We have also demonstrated a cw doubly resonant oscillator near 1.96 μm pumped directly with a commercial cw diode laser at 978 nm.

1,167 citations


Network Information
Related Topics (5)
Optical fiber
167K papers, 1.8M citations
89% related
Photoluminescence
83.4K papers, 1.8M citations
85% related
Laser
353.1K papers, 4.3M citations
85% related
Band gap
86.8K papers, 2.2M citations
85% related
Dielectric
169.7K papers, 2.7M citations
85% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023368
2022804
2021522
2020607
2019561
2018446