scispace - formally typeset
Search or ask a question
Topic

Live migration

About: Live migration is a research topic. Over the lifetime, 1546 publications have been published within this topic receiving 34929 citations.


Papers
More filters
Proceedings ArticleDOI
02 May 2005
TL;DR: The design options for migrating OSes running services with liveness constraints are considered, the concept of writable working set is introduced, and the design, implementation and evaluation of high-performance OS migration built on top of the Xen VMM are presented.
Abstract: Migrating operating system instances across distinct physical hosts is a useful tool for administrators of data centers and clusters: It allows a clean separation between hard-ware and software, and facilitates fault management, load balancing, and low-level system maintenance.By carrying out the majority of migration while OSes continue to run, we achieve impressive performance with minimal service downtimes; we demonstrate the migration of entire OS instances on a commodity cluster, recording service downtimes as low as 60ms. We show that that our performance is sufficient to make live migration a practical tool even for servers running interactive loads.In this paper we consider the design options for migrating OSes running services with liveness constraints, focusing on data center and cluster environments. We introduce and analyze the concept of writable working set, and present the design, implementation and evaluation of high-performance OS migration built on top of the Xen VMM.

3,186 citations

Journal ArticleDOI
TL;DR: A competitive analysis is conducted and competitive ratios of optimal online deterministic algorithms for the single VM migration and dynamic VM consolidation problems are proved, and novel adaptive heuristics for dynamic consolidation of VMs are proposed based on an analysis of historical data from the resource usage by VMs.
Abstract: The rapid growth in demand for computational power driven by modern service applications combined with the shift to the Cloud computing model have led to the establishment of large-scale virtualized data centers. Such data centers consume enormous amounts of electrical energy resulting in high operating costs and carbon dioxide emissions. Dynamic consolidation of virtual machines (VMs) using live migration and switching idle nodes to the sleep mode allows Cloud providers to optimize resource usage and reduce energy consumption. However, the obligation of providing high quality of service to customers leads to the necessity in dealing with the energy-performance trade-off, as aggressive consolidation may lead to performance degradation. Because of the variability of workloads experienced by modern applications, the VM placement should be optimized continuously in an online manner. To understand the implications of the online nature of the problem, we conduct a competitive analysis and prove competitive ratios of optimal online deterministic algorithms for the single VM migration and dynamic VM consolidation problems. Furthermore, we propose novel adaptive heuristics for dynamic consolidation of VMs based on an analysis of historical data from the resource usage by VMs. The proposed algorithms significantly reduce energy consumption, while ensuring a high level of adherence to the service level agreement. We validate the high efficiency of the proposed algorithms by extensive simulations using real-world workload traces from more than a thousand PlanetLab VMs. Copyright © 2011 John Wiley & Sons, Ltd.

1,616 citations

Proceedings ArticleDOI
17 May 2010
TL;DR: First results of simulation-driven evaluation of heuristics for dynamic reallocation of VMs using live migration according to current requirements for CPU performance are presented, showing that the proposed technique brings substantial energy savings, while ensuring reliable QoS.
Abstract: Rapid growth of the demand for computational power by scientific, business and web-applications has led to the creation of large-scale data centers consuming enormous amounts of electrical power. We propose an energy efficient resource management system for virtualized Cloud data centers that reduces operational costs and provides required Quality of Service (QoS). Energy savings are achieved by continuous consolidation of VMs according to current utilization of resources, virtual network topologies established between VMs and thermal state of computing nodes. We present first results of simulation-driven evaluation of heuristics for dynamic reallocation of VMs using live migration according to current requirements for CPU performance. The results show that the proposed technique brings substantial energy savings, while ensuring reliable QoS. This justifies further investigation and development of the proposed resource management system.

777 citations

Book ChapterDOI
22 Nov 2009
TL;DR: In this paper, the authors evaluate the effects of live migration of virtual machines on the performance of applications running inside Xen VMs and show that, in most cases, migration overhead is acceptable but cannot be disregarded, especially in systems where availability and responsiveness are governed by strict Service Level Agreements.
Abstract: Virtualization has become commonplace in modern data centers, often referred as "computing clouds". The capability of virtual machine live migration brings benefits such as improved performance, manageability and fault tolerance, while allowing workload movement with a short service downtime. However, service levels of applications are likely to be negatively affected during a live migration. For this reason, a better understanding of its effects on system performance is desirable. In this paper, we evaluate the effects of live migration of virtual machines on the performance of applications running inside Xen VMs. Results show that, in most cases, migration overhead is acceptable but cannot be disregarded, especially in systems where availability and responsiveness are governed by strict Service Level Agreements. Despite that, there is a high potential for live migration applicability in data centers serving modern Internet applications. Our results are based on a workload covering the domain of multi-tier Web 2.0 applications.

609 citations

Proceedings Article
10 Apr 2005
TL;DR: This is the first system that can migrate unmodified applications on unmodified mainstream Intel x86-based operating system, including Microsoft Windows, Linux, Novell NetWare and others, to provide fast, transparent application migration.
Abstract: This paper describes the design and implementation of a system that uses virtual machine technology [1] to provide fast, transparent application migration. This is the first system that can migrate unmodified applications on unmodified mainstream Intel x86-based operating system, including Microsoft Windows, Linux, Novell NetWare and others. Neither the application nor any clients communicating with the application can tell that the application has been migrated. Experimental measurements show that for a variety of workloads, application downtime caused by migration is less than a second.

588 citations


Network Information
Related Topics (5)
Server
79.5K papers, 1.4M citations
87% related
Wireless ad hoc network
49K papers, 1.1M citations
84% related
Network packet
159.7K papers, 2.2M citations
84% related
Mobile computing
51.3K papers, 1M citations
84% related
Wireless network
122.5K papers, 2.1M citations
83% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202337
202293
202162
202081
2019119
2018132