scispace - formally typeset
Search or ask a question
Topic

Load balancing (electrical power)

About: Load balancing (electrical power) is a research topic. Over the lifetime, 4414 publications have been published within this topic receiving 73078 citations.


Papers
More filters
Journal ArticleDOI

[...]

TL;DR: A heuristic-based Evolutionary Algorithm that easily adapts heuristics in the problem was developed for solving this minimization problem and results show that the proposed demand side management strategy achieves substantial savings, while reducing the peak load demand of the smart grid.
Abstract: Demand side management (DSM) is one of the important functions in a smart grid that allows customers to make informed decisions regarding their energy consumption, and helps the energy providers reduce the peak load demand and reshape the load profile. This results in increased sustainability of the smart grid, as well as reduced overall operational cost and carbon emission levels. Most of the existing demand side management strategies used in traditional energy management systems employ system specific techniques and algorithms. In addition, the existing strategies handle only a limited number of controllable loads of limited types. This paper presents a demand side management strategy based on load shifting technique for demand side management of future smart grids with a large number of devices of several types. The day-ahead load shifting technique proposed in this paper is mathematically formulated as a minimization problem. A heuristic-based Evolutionary Algorithm (EA) that easily adapts heuristics in the problem was developed for solving this minimization problem. Simulations were carried out on a smart grid which contains a variety of loads in three service areas, one with residential customers, another with commercial customers, and the third one with industrial customers. The simulation results show that the proposed demand side management strategy achieves substantial savings, while reducing the peak load demand of the smart grid.

929 citations

Journal ArticleDOI

[...]

05 Dec 2005
TL;DR: This paper deals with general pure active filters for power conditioning, and specific hybridactive filters for harmonic filtering of three-phase diode rectifiers.
Abstract: Unlike traditional passive harmonic filters, modern active harmonic filters have the following multiple functions: harmonic filtering, damping,isolation and termination, reactive-power control for power factor correction and voltage regulation, load balancing, voltage-flicker reduction, and/or their combinations. Significant cost reductions in both power semiconductor devices and signal processing devices have inspired manufactures to put active filters on the market. This paper deals with general pure active filters for power conditioning, and specific hybrid active filters for harmonic filtering of three-phase diode rectifiers.

898 citations

Journal ArticleDOI

[...]

TL;DR: In this article, the authors review the current status and implementation impact of V2G/grid-to-vehicle (G2V) technologies on distributed systems, requirements, benefits, challenges, and strategies for VUE interfaces of both individual vehicles and fleets.
Abstract: Plug-in vehicles can behave either as loads or as a distributed energy and power resource in a concept known as vehicle-to-grid (V2G) connection. This paper reviews the current status and implementation impact of V2G/grid-to-vehicle (G2V) technologies on distributed systems, requirements, benefits, challenges, and strategies for V2G interfaces of both individual vehicles and fleets. The V2G concept can improve the performance of the electricity grid in areas such as efficiency, stability, and reliability. A V2G-capable vehicle offers reactive power support, active power regulation, tracking of variable renewable energy sources, load balancing, and current harmonic filtering. These technologies can enable ancillary services, such as voltage and frequency control and spinning reserve. Costs of V2G include battery degradation, the need for intensive communication between the vehicles and the grid, effects on grid distribution equipment, infrastructure changes, and social, political, cultural, and technical obstacles. Although V2G operation can reduce the lifetime of vehicle batteries, it is projected to become economical for vehicle owners and grid operators. Components and unidirectional/bidirectional power flow technologies of V2G systems, individual and aggregated structures, and charging/recharging frequency and strategies (uncoordinated/coordinated smart) are addressed. Three elements are required for successful V2G operation: power connection to the grid, control and communication between vehicles and the grid operator, and on-board/off-board intelligent metering. Success of the V2G concept depends on standardization of requirements and infrastructure decisions, battery technology, and efficient and smart scheduling of limited fast-charge infrastructure. A charging/discharging infrastructure must be deployed. Economic benefits of V2G technologies depend on vehicle aggregation and charging/recharging frequency and strategies. The benefits will receive increased attention from grid operators and vehicle owners in the future.

639 citations

Journal ArticleDOI

[...]

01 Jun 1982
TL;DR: Modern power system analysis, Modern power systemAnalysis, مرکز فناوری اطلاعات, کسورزی, امیران رسانی , اوشاوρز عاعد, £1,000, £2,500, £3,000 per megawatt-hour.

529 citations

Journal ArticleDOI

[...]

TL;DR: The results demonstrate that the intra-hour load balancing service provided by HVAC loads meets the performance requirements and can become a major source of revenue for load-serving entities where the two-way communication smart grid infrastructure enables direct load control over the HVac loads.
Abstract: This paper investigates the potential of providing intra-hour load balancing services using aggregated heating, ventilating, and air-conditioning (HVAC) loads. A directload control algorithm is presented. A temperature-priority-list method is used to dispatch the HVAC loads optimally to maintain customer-desired indoor temperatures and load diversity. Realistic intra-hour load balancing signals are used to evaluate the operational characteristics of the HVAC load under different outdoor temperature profiles and different indoor temperature settings. The number of HVAC units needed is also investigated. Modeling results suggest that the number of HVAC units needed to provide a ±1-MW load balancing service 24 hours a day varies significantly with baseline settings, high and low temperature settings, and outdoor temperatures. The results demonstrate that the intra-hour load balancing service provided by HVAC loads meets the performance requirements and can become a major source of revenue for load-serving entities where the two-way communication smart grid infrastructure enables direct load control over the HVAC loads.

509 citations

Network Information
Related Topics (5)
Electric power system
133K papers, 1.7M citations
88% related
Wind power
99K papers, 1.5M citations
84% related
Voltage
296.3K papers, 1.7M citations
79% related
Renewable energy
87.6K papers, 1.6M citations
79% related
Photovoltaic system
103.9K papers, 1.6M citations
79% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023183
2022435
202199
2020111
2019111
2018153