scispace - formally typeset
Search or ask a question
Topic

Load regulation

About: Load regulation is a research topic. Over the lifetime, 2221 publications have been published within this topic receiving 43988 citations.


Papers
More filters
Journal ArticleDOI
01 Jan 2011
TL;DR: Conceptual frameworks for actively involving highly distributed loads in power system control actions and some of the challenges to achieving a load control scheme that balances device- level objectives with power system-level objectives are discussed.
Abstract: This paper discusses conceptual frameworks for actively involving highly distributed loads in power system control actions. The context for load control is established by providing an overview of system control objectives, including economic dispatch, automatic generation control, and spinning reserve. The paper then reviews existing initiatives that seek to develop load control programs for the provision of power system services. We then discuss some of the challenges to achieving a load control scheme that balances device-level objectives with power system-level objectives. One of the central premises of the paper is that, in order to achieve full responsiveness, direct load control (as opposed to price response) is required to enable fast time scale, predictable control opportunities, especially for the provision of ancillary services such as regulation and contingency reserves. Centralized, hierarchical, and distributed control architectures are discussed along with benefits and disadvantages, especially in relation to integration with the legacy power system control architecture. Implications for the supporting communications infrastructure are also considered. Fully responsive load control is illustrated in the context of thermostatically controlled loads and plug-in electric vehicles.

1,105 citations

Journal ArticleDOI
TL;DR: In this article, a lowbandwidth communication (LBC)-based improved droop control method is proposed to improve the performance of the dc microgrid operation, which does not require a centralized secondary controller.
Abstract: Droop control is the basic control method for load current sharing in dc microgrid applications. The conventional dc droop control method is realized by linearly reducing the dc output voltage as the output current increases. This method has two limitations. First, with the consideration of line resistance in a droop-controlled dc microgrid, since the output voltage of each converter cannot be exactly the same, the output current sharing accuracy is degraded. Second, the dc-bus voltage deviation increases with the load due to the droop action. In this paper, in order to improve the performance of the dc microgrid operation, a low-bandwidth communication (LBC)-based improved droop control method is proposed. In contrast with the conventional approach, the control system does not require a centralized secondary controller. Instead, it uses local controllers and the LBC network to exchange information between converter units. The droop controller is employed to achieve independent operation, and the average voltage and current controllers are used in each converter to simultaneously enhance the current sharing accuracy and restore the dc bus voltage. All of the controllers are realized locally, and the LBC system is only used for changing the values of the dc voltage and current. Hence, a decentralized control scheme is accomplished. The simulation test based on MATLAB/Simulink and the experimental validation based on a 2 × 2.2 kW prototype were implemented to demonstrate the proposed approach.

865 citations

Journal ArticleDOI
TL;DR: An improved droop controller is proposed to achieve accurate proportional load sharing without meeting these two requirements and to reduce the load voltage drop due to the load effect and the droop effect.
Abstract: In this paper, the inherent limitations of the conventional droop control scheme are revealed. It has been proven that parallel-operated inverters should have the same per-unit impedance in order for them to share the load accurately in proportion to their power ratings when the conventional droop control scheme is adopted. The droop controllers should also generate the same voltage set-point for the inverters. Both conditions are difficult to meet in practice, which results in errors in proportional load sharing. An improved droop controller is then proposed to achieve accurate proportional load sharing without meeting these two requirements and to reduce the load voltage drop due to the load effect and the droop effect. The load voltage can be maintained within the desired range around the rated value. The strategy is robust against numerical errors, disturbances, noises, feeder impedance, parameter drifts and component mismatches. The only sharing error, which is quantified in this paper, comes from the error in measuring the load voltage. When there are errors in the voltage measured, a fundamental tradeoff between the voltage drop and the sharing accuracy appears. It has also been explained that, in order to avoid errors in power sharing, the global settings of the rated voltage and frequency should be accurate. Experimental results are provided to verify the analysis and design.

777 citations

Journal ArticleDOI
TL;DR: The results demonstrate that the intra-hour load balancing service provided by HVAC loads meets the performance requirements and can become a major source of revenue for load-serving entities where the two-way communication smart grid infrastructure enables direct load control over the HVac loads.
Abstract: This paper investigates the potential of providing intra-hour load balancing services using aggregated heating, ventilating, and air-conditioning (HVAC) loads. A directload control algorithm is presented. A temperature-priority-list method is used to dispatch the HVAC loads optimally to maintain customer-desired indoor temperatures and load diversity. Realistic intra-hour load balancing signals are used to evaluate the operational characteristics of the HVAC load under different outdoor temperature profiles and different indoor temperature settings. The number of HVAC units needed is also investigated. Modeling results suggest that the number of HVAC units needed to provide a ±1-MW load balancing service 24 hours a day varies significantly with baseline settings, high and low temperature settings, and outdoor temperatures. The results demonstrate that the intra-hour load balancing service provided by HVAC loads meets the performance requirements and can become a major source of revenue for load-serving entities where the two-way communication smart grid infrastructure enables direct load control over the HVAC loads.

627 citations

Journal ArticleDOI
TL;DR: In this paper, the authors proposed an optimization algorithm to manage a virtual power plant (VPP) composed of a large number of customers with thermostatically controlled appliances based on a direct load control (DLC).
Abstract: In the framework of liberalized electricity markets, distributed generation and controllable demand have the opportunity to participate in the real-time operation of transmission and distribution networks. This may be done by using the virtual power plant (VPP) concept, which consists of aggregating the capacity of many distributed energy resources (DER) in order to make them more accessible and manageable across energy markets. This paper provides an optimization algorithm to manage a VPP composed of a large number of customers with thermostatically controlled appliances. The algorithm, based on a direct load control (DLC), determines the optimal control schedules that an aggregator should apply to the controllable devices of the VPP in order to optimize load reduction over a specified control period. The results define the load reduction bid that the aggregator can present in the electricity market, thus helping to minimize network congestion and deviations between generation and demand. The proposed model, which is valid for both transmission and distribution networks, is tested on a real power system to demonstrate its applicability.

597 citations


Network Information
Related Topics (5)
Electric power system
133K papers, 1.7M citations
88% related
Voltage
296.3K papers, 1.7M citations
88% related
Capacitor
166.6K papers, 1.4M citations
86% related
Control theory
299.6K papers, 3.1M citations
83% related
Control system
129K papers, 1.5M citations
82% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20236
202227
202143
202080
2019124
2018107