scispace - formally typeset
Search or ask a question
Topic

Local field potential

About: Local field potential is a research topic. Over the lifetime, 1916 publications have been published within this topic receiving 113727 citations. The topic is also known as: LFP.


Papers
More filters
Journal ArticleDOI
Nikos K. Logothetis1, J Pauls1, Mark Augath1, T Trinath1, Axel Oeltermann1 
12 Jul 2001-Nature
TL;DR: These findings suggest that the BOLD contrast mechanism reflects the input and intracortical processing of a given area rather than its spiking output, and that LFPs yield a better estimate of BOLD responses than the multi-unit responses.
Abstract: Functional magnetic resonance imaging (fMRI) is widely used to study the operational organization of the human brain, but the exact relationship between the measured fMRI signal and the underlying neural activity is unclear. Here we present simultaneous intracortical recordings of neural signals and fMRI responses. We compared local field potentials (LFPs), single- and multi-unit spiking activity with highly spatio-temporally resolved blood-oxygen-level-dependent (BOLD) fMRI responses from the visual cortex of monkeys. The largest magnitude changes were observed in LFPs, which at recording sites characterized by transient responses were the only signal that significantly correlated with the haemodynamic response. Linear systems analysis on a trialby-trial basis showed that the impulse response of the neurovascular system is both animal- and site-specific, and that LFPs yield a better estimate of BOLD responses than the multi-unit responses. These findings suggest that the BOLD contrast mechanism reflects the input and intracortical processing of a given area rather than its spiking output.

6,140 citations

Journal ArticleDOI
TL;DR: High-density recordings of field activity in animals and subdural grid recordings in humans can provide insight into the cooperative behaviour of neurons, their average synaptic input and their spiking output, and can increase the understanding of how these processes contribute to the extracellular signal.
Abstract: Neuronal activity in the brain gives rise to transmembrane currents that can be measured in the extracellular medium. Although the major contributor of the extracellular signal is the synaptic transmembrane current, other sources — including Na+ and Ca2+ spikes, ionic fluxes through voltage- and ligand-gated channels, and intrinsic membrane oscillations — can substantially shape the extracellular field. High-density recordings of field activity in animals and subdural grid recordings in humans, combined with recently developed data processing tools and computational modelling, can provide insight into the cooperative behaviour of neurons, their average synaptic input and their spiking output, and can increase our understanding of how these processes contribute to the extracellular signal.

3,366 citations

Journal ArticleDOI
TL;DR: The results demonstrate that local neuronal populations in the visual cortex engage in stimulus-specific synchronous oscillations resulting from an intracortical mechanism, and may provide a general mechanism by which activity patterns in spatially separate regions of the cortex are temporally coordinated.
Abstract: In areas 17 and 18 of the cat visual cortex the firing probability of neurons, in response to the presentation of optimally aligned light bars within their receptive field, oscillates with a peak frequency near 40 Hz. The neuronal firing pattern is tightly correlated with the phase and amplitude of an oscillatory local field potential recorded through the same electrode. The amplitude of the local field-potential oscillations are maximal in response to stimuli that match the orientation and direction preference of the local cluster of neurons. Single and multiunit recordings from the dorsal lateral geniculate nucleus of the thalamus showed no evidence of oscillations of the neuronal firing probability in the range of 20-70 Hz. The results demonstrate that local neuronal populations in the visual cortex engage in stimulus-specific synchronous oscillations resulting from an intracortical mechanism. The oscillatory responses may provide a general mechanism by which activity patterns in spatially separate regions of the cortex are temporally coordinated.

2,404 citations

Journal ArticleDOI
TL;DR: The cellular and synaptic mechanisms underlying gamma oscillations are reviewed and empirical questions and controversial conceptual issues are outlined, finding that gamma-band rhythmogenesis is inextricably tied to perisomatic inhibition.
Abstract: Gamma rhythms are commonly observed in many brain regions during both waking and sleep states, yet their functions and mechanisms remain a matter of debate. Here we review the cellular and synaptic mechanisms underlying gamma oscillations and outline empirical questions and controversial conceptual issues. Our main points are as follows: First, gamma-band rhythmogenesis is inextricably tied to perisomatic inhibition. Second, gamma oscillations are short-lived and typically emerge from the coordinated interaction of excitation and inhibition, which can be detected as local field potentials. Third, gamma rhythm typically concurs with irregular firing of single neurons, and the network frequency of gamma oscillations varies extensively depending on the underlying mechanism. To document gamma oscillations, efforts should be made to distinguish them from mere increases of gamma-band power and/or increased spiking activity. Fourth, the magnitude of gamma oscillation is modulated by slower rhythms. Such cross-frequency coupling may serve to couple active patches of cortical circuits. Because of their ubiquitous nature and strong correlation with the "operational modes" of local circuits, gamma oscillations continue to provide important clues about neuronal population dynamics in health and disease.

2,168 citations

Journal ArticleDOI
TL;DR: This work assumes that the coherence of SE-resonances is mediated by recurrent excitatory intra- and inter-areal connections via phase locking between assemblies that represent the linking features of the actual visual scene.
Abstract: Primary visual coding can be characterized by the receptive field (RF) properties of single neurons. Subject of this paper is our search for a global,second coding step beyond the RF-concept that links related features in a visual scene. In recent models of visual coding, oscillatory activities have been proposed to constitute such linking signals. We tested the neurophysiological relevance of this hypothesis for the visual system. Single and multiple spikes as well as local field potentials were recorded simultaneously from several locations in the primary visual cortex (A17 and A18) using 7 or 19 individually advanceable fibermicroelectrodes (250 or 330 μm apart).Stimulusevoked (SE)-resonances of 35---85 Hz were found in these three types of signals throughout the visual cortex when the primary coding channels were activated by their specific stimuli. Stimulus position, orientation, movement direction and velocity, ocularity and stationary flicker caused specific SE-resonances.Coherent SE-resonances were found at distant cortical positions when at least one of the primary coding properties was similar. Coherence was found1) within a vertical cortex column,2) between neighbouring hypercolumns, and3) between two different cortical areas. We assume that the coherence of SE-resonances is mediated by recurrent excitatory intra- and inter-areal connections via phase locking between assemblies that represent the linking features of the actual visual scene. Visually related activities are, thus, transiently labelled by a temporal code that signalizes their momentary association.

2,104 citations


Network Information
Related Topics (5)
Synaptic plasticity
19.3K papers, 1.3M citations
90% related
Hippocampal formation
30.6K papers, 1.7M citations
88% related
Prefrontal cortex
24K papers, 1.9M citations
85% related
Hippocampus
34.9K papers, 1.9M citations
85% related
NMDA receptor
24.2K papers, 1.3M citations
83% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023186
2022344
2021118
2020123
2019108
2018125