scispace - formally typeset
Search or ask a question
Topic

Logic gate

About: Logic gate is a research topic. Over the lifetime, 35776 publications have been published within this topic receiving 488365 citations. The topic is also known as: logic circuit.


Papers
More filters
Journal ArticleDOI

[...]

TL;DR: In this paper, techniques for low power operation are presented which use the lowest possible supply voltage coupled with architectural, logic style, circuit, and technology optimizations to reduce power consumption in CMOS digital circuits while maintaining computational throughput.
Abstract: Motivated by emerging battery-operated applications that demand intensive computation in portable environments, techniques are investigated which reduce power consumption in CMOS digital circuits while maintaining computational throughput. Techniques for low-power operation are shown which use the lowest possible supply voltage coupled with architectural, logic style, circuit, and technology optimizations. An architecturally based scaling strategy is presented which indicates that the optimum voltage is much lower than that determined by other scaling considerations. This optimum is achieved by trading increased silicon area for reduced power consumption. >

2,651 citations

Journal ArticleDOI

[...]

09 Nov 2001-Science
TL;DR: This work demonstrates logic circuits with field-effect transistors based on single carbon nanotubes that exhibit a range of digital logic operations, such as an inverter, a logic NOR, a static random-access memory cell, and an ac ring oscillator.
Abstract: We demonstrate logic circuits with field-effect transistors based on single carbon nanotubes. Our device layout features local gates that provide excellent capacitive coupling between the gate and nanotube, enabling strong electrostatic doping of the nanotube from p-doping to n-doping and the study of the nonconventional long-range screening of charge along the one-dimensional nanotubes. The transistors show favorable device characteristics such as high gain (>10), a large on-off ratio (>10(5)), and room-temperature operation. Importantly, the local-gate layout allows for integration of multiple devices on a single chip. Indeed, we demonstrate one-, two-, and three-transistor circuits that exhibit a range of digital logic operations, such as an inverter, a logic NOR, a static random-access memory cell, and an ac ring oscillator.

2,602 citations

Journal ArticleDOI

[...]

09 Nov 2001-Science
TL;DR: It is shown that crossed nanowire p-n junctions and junction arrays can be assembled in over 95% yield with controllable electrical characteristics, and in addition, that these junctions can be used to create integrated nanoscale field-effect transistor arrays with nanowires as both the conducting channel and gate electrode.
Abstract: Miniaturization in electronics through improvements in established “top-down” fabrication techniques is approaching the point where fundamental issues are expected to limit the dramatic increases in computing seen over the past several decades Here we report a “bottom-up” approach in which functional device elements and element arrays have been assembled from solution through the use of electronically well-defined semiconductor nanowire building blocks We show that crossed nanowire p-n junctions and junction arrays can be assembled in over 95% yield with controllable electrical characteristics, and in addition, that these junctions can be used to create integrated nanoscale field-effect transistor arrays with nanowires as both the conducting channel and gate electrode Nanowire junction arrays have been configured as key OR, AND, and NOR logic-gate structures with substantial gain and have been used to implement basic computation

2,056 citations

Journal ArticleDOI

[...]

09 Sep 2005-Science
TL;DR: “Spintronics,” in which both the spin and charge of electrons are used for logic and memory operations, promises an alternate route to traditional semiconductor electronics.
Abstract: “Spintronics,” in which both the spin and charge of electrons are used for logic and memory operations, promises an alternate route to traditional semiconductor electronics. A complete logic architecture can be constructed, which uses planar magnetic wires that are less than a micrometer in width. Logical NOT, logical AND, signal fan-out, and signal cross-over elements each have a simple geometric design, and they can be integrated together into one circuit. An additional element for data input allows information to be written to domain-wall logic circuits.

1,809 citations

Journal ArticleDOI

[...]

TL;DR: In this paper, the rapid single-flux-quantum (RSFQ) circuit family is reviewed and a discussion of possible future developments and applications of this novel, ultrafast digital technology is discussed.
Abstract: Recent developments concerning the rapid single-flux-quantum (RSFQ) circuit family are reviewed. Elementary cells in this circuit family can generate, pass, memorize, and reproduce picosecond voltage pulses with a nominally quantized area corresponding to transfer of a single magnetic flux quantum across a Josephson junction. Functionally, each cell can be viewed as a combination of a logic gate and an output latch (register) controlled by clock pulses, which are physically similar to the signal pulses. Hand-shaking style of local exchange by the clock pulses enables one to increase complexity of the LSI RSFQ systems without loss of operating speed. The simplest components of the RSFQ circuitry have been experimentally tested at clock frequencies exceeding 100 GHz, and an increase of the speed beyond 300 GHz is expected as a result of using an up-to-date fabrication technology. This review includes a discussion of possible future developments and applications of this novel, ultrafast digital technology. >

1,756 citations


Network Information
Related Topics (5)
CMOS
81.3K papers, 1.1M citations
96% related
Transistor
138K papers, 1.4M citations
96% related
Integrated circuit
82.7K papers, 1M citations
95% related
Electronic circuit
114.2K papers, 971.5K citations
92% related
Field-effect transistor
56.7K papers, 1M citations
90% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023126
2022304
2021906
20201,085
20191,215
20181,345