scispace - formally typeset
Search or ask a question
Topic

LogitBoost

About: LogitBoost is a research topic. Over the lifetime, 254 publications have been published within this topic receiving 50661 citations. The topic is also known as: AnyBoost.


Papers
More filters
Journal ArticleDOI
TL;DR: A general gradient descent boosting paradigm is developed for additive expansions based on any fitting criterion, and specific algorithms are presented for least-squares, least absolute deviation, and Huber-M loss functions for regression, and multiclass logistic likelihood for classification.
Abstract: Function estimation/approximation is viewed from the perspective of numerical optimization in function space, rather than parameter space. A connection is made between stagewise additive expansions and steepest-descent minimization. A general gradient descent “boosting” paradigm is developed for additive expansions based on any fitting criterion.Specific algorithms are presented for least-squares, least absolute deviation, and Huber-M loss functions for regression, and multiclass logistic likelihood for classification. Special enhancements are derived for the particular case where the individual additive components are regression trees, and tools for interpreting such “TreeBoost” models are presented. Gradient boosting of regression trees produces competitive, highly robust, interpretable procedures for both regression and classification, especially appropriate for mining less than clean data. Connections between this approach and the boosting methods of Freund and Shapire and Friedman, Hastie and Tibshirani are discussed.

17,764 citations

Journal ArticleDOI
01 Aug 1997
TL;DR: The model studied can be interpreted as a broad, abstract extension of the well-studied on-line prediction model to a general decision-theoretic setting, and it is shown that the multiplicative weight-update Littlestone?Warmuth rule can be adapted to this model, yielding bounds that are slightly weaker in some cases, but applicable to a considerably more general class of learning problems.
Abstract: In the first part of the paper we consider the problem of dynamically apportioning resources among a set of options in a worst-case on-line framework. The model we study can be interpreted as a broad, abstract extension of the well-studied on-line prediction model to a general decision-theoretic setting. We show that the multiplicative weight-update Littlestone?Warmuth rule can be adapted to this model, yielding bounds that are slightly weaker in some cases, but applicable to a considerably more general class of learning problems. We show how the resulting learning algorithm can be applied to a variety of problems, including gambling, multiple-outcome prediction, repeated games, and prediction of points in Rn. In the second part of the paper we apply the multiplicative weight-update technique to derive a new boosting algorithm. This boosting algorithm does not require any prior knowledge about the performance of the weak learning algorithm. We also study generalizations of the new boosting algorithm to the problem of learning functions whose range, rather than being binary, is an arbitrary finite set or a bounded segment of the real line.

15,813 citations

Proceedings Article
Yoav Freund1, Robert E. Schapire1
03 Jul 1996
TL;DR: This paper describes experiments carried out to assess how well AdaBoost with and without pseudo-loss, performs on real learning problems and compared boosting to Breiman's "bagging" method when used to aggregate various classifiers.
Abstract: In an earlier paper, we introduced a new "boosting" algorithm called AdaBoost which, theoretically, can be used to significantly reduce the error of any learning algorithm that con- sistently generates classifiers whose performance is a little better than random guessing. We also introduced the related notion of a "pseudo-loss" which is a method for forcing a learning algorithm of multi-label concepts to concentrate on the labels that are hardest to discriminate. In this paper, we describe experiments we carried out to assess how well AdaBoost with and without pseudo-loss, performs on real learning problems. We performed two sets of experiments. The first set compared boosting to Breiman's "bagging" method when used to aggregate various classifiers (including decision trees and single attribute- value tests). We compared the performance of the two methods on a collection of machine-learning benchmarks. In the second set of experiments, we studied in more detail the performance of boosting using a nearest-neighbor classifier on an OCR problem.

7,601 citations

Journal ArticleDOI
TL;DR: This work shows that this seemingly mysterious phenomenon of boosting can be understood in terms of well-known statistical principles, namely additive modeling and maximum likelihood, and develops more direct approximations and shows that they exhibit nearly identical results to boosting.
Abstract: Boosting is one of the most important recent developments in classification methodology. Boosting works by sequentially applying a classification algorithm to reweighted versions of the training data and then taking a weighted majority vote of the sequence of classifiers thus produced. For many classification algorithms, this simple strategy results in dramatic improvements in performance. We show that this seemingly mysterious phenomenon can be understood in terms of well-known statistical principles, namely additive modeling and maximum likelihood. For the two-class problem, boosting can be viewed as an approximation to additive modeling on the logistic scale using maximum Bernoulli likelihood as a criterion. We develop more direct approximations and show that they exhibit nearly identical results to boosting. Direct multiclass generalizations based on multinomial likelihood are derived that exhibit performance comparable to other recently proposed multiclass generalizations of boosting in most situations, and far superior in some. We suggest a minor modification to boosting that can reduce computation, often by factors of 10 to 50. Finally, we apply these insights to produce an alternative formulation of boosting decision trees. This approach, based on best-first truncated tree induction, often leads to better performance, and can provide interpretable descriptions of the aggregate decision rule. It is also much faster computationally, making it more suitable to large-scale data mining applications.

6,598 citations

Proceedings ArticleDOI
24 Jul 1998
TL;DR: Several improvements to Freund and Schapire’s AdaBoost boosting algorithm are described, particularly in a setting in which hypotheses may assign confidences to each of their predictions.
Abstract: We describe several improvements to Freund and Schapire‘s AdaBoost boosting algorithm, particularly in a setting in which hypotheses may assign confidences to each of their predictions. We give a simplified analysis of AdaBoost in this setting, and we show how this analysis can be used to find improved parameter settings as well as a refined criterion for training weak hypotheses. We give a specific method for assigning confidences to the predictions of decision trees, a method closely related to one used by Quinlan. This method also suggests a technique for growing decision trees which turns out to be identical to one proposed by Kearns and Mansour. We focus next on how to apply the new boosting algorithms to multiclass classification problems, particularly to the multi-label case in which each example may belong to more than one class. We give two boosting methods for this problem, plus a third method based on output coding. One of these leads to a new method for handling the single-label case which is simpler but as effective as techniques suggested by Freund and Schapire. Finally, we give some experimental results comparing a few of the algorithms discussed in this paper.

2,900 citations


Network Information
Related Topics (5)
Deep learning
79.8K papers, 2.1M citations
78% related
Convolutional neural network
74.7K papers, 2M citations
76% related
Artificial neural network
207K papers, 4.5M citations
76% related
Feature extraction
111.8K papers, 2.1M citations
75% related
Feature (computer vision)
128.2K papers, 1.7M citations
75% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20221
202116
20209
201916
201816
201713