scispace - formally typeset
Search or ask a question
Topic

Loop-mediated isothermal amplification

About: Loop-mediated isothermal amplification is a research topic. Over the lifetime, 5539 publications have been published within this topic receiving 104444 citations. The topic is also known as: LAMP & LAMP assay.


Papers
More filters
Journal ArticleDOI
27 Apr 2018-Science
TL;DR: It is shown that RNA-guided DNA binding unleashes indiscriminate single-stranded DNA cleavage activity by Cas12a that completely degrades ssDNA molecules, which is also a property of other type V CRISPR-Cas12 enzymes.
Abstract: CRISPR-Cas12a (Cpf1) proteins are RNA-guided enzymes that bind and cut DNA as components of bacterial adaptive immune systems Like CRISPR-Cas9, Cas12a has been harnessed for genome editing on the basis of its ability to generate targeted, double-stranded DNA breaks Here we show that RNA-guided DNA binding unleashes indiscriminate single-stranded DNA (ssDNA) cleavage activity by Cas12a that completely degrades ssDNA molecules We find that target-activated, nonspecific single-stranded deoxyribonuclease (ssDNase) cleavage is also a property of other type V CRISPR-Cas12 enzymes By combining Cas12a ssDNase activation with isothermal amplification, we create a method termed DNA endonuclease-targeted CRISPR trans reporter (DETECTR), which achieves attomolar sensitivity for DNA detection DETECTR enables rapid and specific detection of human papillomavirus in patient samples, thereby providing a simple platform for molecular diagnostics

1,989 citations

Journal ArticleDOI
28 Apr 2017-Science
TL;DR: A Cas13a-based molecular detection platform, termed Specific High-Sensitivity Enzymatic Reporter UnLOCKing (SHERLOCK), is used to detect specific strains of Zika and Dengue virus, distinguish pathogenic bacteria, genotype human DNA, and identify mutations in cell-free tumor DNA.
Abstract: Rapid, inexpensive, and sensitive nucleic acid detection may aid point-of-care pathogen detection, genotyping, and disease monitoring. The RNA-guided, RNA-targeting clustered regularly interspaced short palindromic repeats (CRISPR) effector Cas13a (previously known as C2c2) exhibits a “collateral effect” of promiscuous ribonuclease activity upon target recognition. We combine the collateral effect of Cas13a with isothermal amplification to establish a CRISPR-based diagnostic (CRISPR-Dx), providing rapid DNA or RNA detection with attomolar sensitivity and single-base mismatch specificity. We use this Cas13a-based molecular detection platform, termed Specific High-Sensitivity Enzymatic Reporter UnLOCKing (SHERLOCK), to detect specific strains of Zika and Dengue virus, distinguish pathogenic bacteria, genotype human DNA, and identify mutations in cell-free tumor DNA. Furthermore, SHERLOCK reaction reagents can be lyophilized for cold-chain independence and long-term storage and be readily reconstituted on paper for field applications.

1,946 citations

Journal ArticleDOI
TL;DR: The LAMP method presented here uses loop primers to achieve reaction times of less than half that of the original LAMP, which should facilitate genetic analysis, including genetic diagnosis in the clinical laboratory.

1,699 citations

Journal ArticleDOI
TL;DR: An improved simple visual detection system for the results of the LAMP reaction that enables visual discrimination of results without costly specialized equipment should be helpful in basic research on medicine and pharmacy, environmental hygiene, point-of-care testing and more.
Abstract: As the human genome is decoded and its involvement in diseases is being revealed through postgenome research, increased adoption of genetic testing is expected. Critical to such testing methods is the ease of implementation and comprehensible presentation of amplification results. Loop-mediated isothermal amplification (LAMP) is a simple, rapid, specific and cost-effective nucleic acid amplification method when compared to PCR, nucleic acid sequence-based amplification, self-sustained sequence replication and strand displacement amplification. This protocol details an improved simple visual detection system for the results of the LAMP reaction. In LAMP, a large amount of DNA is synthesized, yielding a large pyrophosphate ion by-product. Pyrophosphate ion combines with divalent metallic ion to form an insoluble salt. Adding manganous ion and calcein, a fluorescent metal indicator, to the reaction solution allows a visualization of substantial alteration of the fluorescence during the one-step amplification reaction, which takes 30-60 min. As the signal recognition is highly sensitive, this system enables visual discrimination of results without costly specialized equipment. This detection method should be helpful in basic research on medicine and pharmacy, environmental hygiene, point-of-care testing and more.

1,521 citations

Journal ArticleDOI
TL;DR: Real-time monitoring of the LAMP reaction was achieved by real-time measurement of turbidity, which indicated an increase in the turbidity of the reaction mixture according to the production of precipitate correlates with the amount of DNA synthesized.

1,505 citations


Network Information
Related Topics (5)
Virus
136.9K papers, 5.2M citations
78% related
Plasmid
44.3K papers, 1.9M citations
76% related
Antibody
113.9K papers, 4.1M citations
75% related
Viral replication
33.4K papers, 1.6M citations
75% related
Genome
74.2K papers, 3.8M citations
75% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20241
2023402
2022951
2021485
2020503
2019430