scispace - formally typeset
Search or ask a question
Topic

Loreclezole

About: Loreclezole is a research topic. Over the lifetime, 110 publications have been published within this topic receiving 7371 citations. The topic is also known as: R 72063.


Papers
More filters
Journal ArticleDOI
13 Apr 1989-Nature
TL;DR: The isolation of a cloned cDNA encoding a new GABAA receptor subunit, termed γ2, which shares approximately 40% sequence identity with α-and β-subunits and whose messenger RNA is prominently localized in neuronal subpopulations throughout the CNS.
Abstract: NEUROTRANSMISSION effected by GABA (γ-aminobutyric acid) is predominantly mediated by a gated chloride channel intrinsic to the GABAA receptor. This heterooligomeric receptor1 exists in most inhibitory synapses in the vertebrate central nervous system (CNS) and can be regulated by clinically important compounds such as benzodiazepines and barbiturates2. The primary structures of GABAA receptor α- and β-subunits have been deduced from cloned complementary DNAs3,4. Co-expression of these subunits in heterologous systems generates receptors which display much of the pharmacology of their neural counterparts, including potentiation by barbiturates3–5. Conspicuously, however, they lack binding sites for, and consistent electrophysiological responses to, benzodiazepines4,5. We now report the isolation of a cloned cDNA encoding a new GABAA receptor subunit, termed γ2, which shares approximately 40% sequence identity with α-and β-subunits and whose messenger RNA is prominently localized in neuronal subpopulations throughout the CNS. Importantly, coexpression of the γ2 subunit with α1 and β1 subunits produces GABAA receptors displaying high-affinity binding for central benzodiazepine receptor ligands.

1,334 citations

Journal ArticleDOI
01 Nov 1990-Neuron
TL;DR: The combination alpha 5 beta 2 gamma 2 was identified as the minimal requirement reproducing consensus properties of the vertebrate GABAA receptor channel, including cooperativity of GABA-dependent channel gating with a Ka in the range of 10 microM, modulation by various drugs acting at the benzodiazepine binding site, picrotoxin sensitivity, and barbiturate effects.

602 citations

Journal ArticleDOI
01 Nov 1995-Synapse
TL;DR: The description of a receptor gene superfamily comprising the subunits of the GABAA, nicotinic acetylcholine, and glycine receptors has led to a new way of thinking about gene expression and receptor assembly in the nervous system.
Abstract: The gamma-aminobutyric acid type A (GABAA) receptor represents an elementary switching mechanism integral to the functioning of the central nervous system and a locus for the action of many mood- and emotion-altering agents such as benzodiazepines, barbiturates, steroids, and alcohol. Anxiety, sleep disorders, and convulsive disorders have been effectively treated with therapeutic agents that enhance the action of GABA at the GABAA receptor or increase the concentration of GABA in nervous tissue. The GABAA receptor is a multimeric membrane-spanning ligand-gated ion channel that admits chloride upon binding of the neurotransmitter GABA and is modulated by many endogenous and therapeutically important agents. Since GABA is the major inhibitory neurotransmitter in the CNS, modulation of its response has profound implications for brain functioning. The GABAA receptor is virtually the only site of action for the centrally acting benzodiazepines, the most widely prescribed of the anti-anxiety medications. Increasing evidence points to an important role for GABA in epilepsy and various neuropsychiatric disorders. Recent advances in molecular biology and complementary information derived from pharmacology, biochemistry, electrophysiology, anatomy and cell biology, and behavior have led to a phenomenal growth in our understanding of the structure, function, regulation, and evolution of the GABAA receptor. Benzodiazepines, barbiturates, steroids, polyvalent cations, and ethanol act as positive or negative modulators of receptor function. The description of a receptor gene superfamily comprising the subunits of the GABAA, nicotinic acetylcholine, and glycine receptors has led to a new way of thinking about gene expression and receptor assembly in the nervous system. Seventeen genetically distinct subunit subtypes (alpha 1-alpha 6, beta 1-beta 4, gamma 1-gamma 4, delta, p1-p2) and alternatively spliced variants contribute to the molecular architecture of the GABAA receptor. Mysteriously, certain preferred combinations of subunits, most notably the alpha 1 beta 2 gamma 2 arrangement, are widely codistributed, while the expression of other subunits, such as beta 1 or alpha 6, is severely restricted to specific neurons in the hippocampal formation or cerebellar cortex. Nervous tissue has the capacity to exert control over receptor number, allosteric uncoupling, subunit mRNA levels, and posttranslational modifications through cellular signal transduction mechanisms under active investigation. The genomic organization of the GABAA receptor genes suggests that the present abundance of subtypes arose during evolution through the duplication and translocations of a primordial alpha-beta-gamma gene cluster. This review describes these varied aspects of GABAA receptor research with special emphasis on contemporary cellular and molecular discoveries.

493 citations

Journal ArticleDOI
TL;DR: The pharmacology of putative receptor isoforms is summarized and the characteristics of functional channels are emphasized to further the understanding of GABA-related disorders and of the complex interaction of excitatory and inhibitory mechanisms in neuronal processing.
Abstract: The amino acid γ-aminobutyric-acid (GABA) prevails in the CNS as an inhibitory neurotrans-mitter that mediates most of its effects through fast GABA-gated Cl−-channels (GABAAR). Molecular biology uncovered the complex subunit architecture of this receptor channel, in which a pentameric assembly derived from five of at least 17 mammalian subunits, grouped in the six classes α, β, γ, δ, e, and ρ, permits a vast number of putative receptor isoforms. The subunit composition of a particular receptor determines the specific effects of allosterical modulators of the GABAARs like benzodiazepines (BZs), barbiturates, steroids, some convulsants, polyvalent cations, and ethanol. To understand the physiology and diversity of GABAARs, the native isoforms have to be identified by their localization in the brain and by their pharmacology. In heterologous expression systems, channels require the presence of α, β, and γ subunits in order to mimic the full repertoire of native receptor responses to drugs, with the BZ pharmacology being determined by the particular α and γ subunit variants. Little is known about the functional properties of the β, δ, and e subunit classes and only a few receptor subtype-specific substances like loreclezole and furosemide are known that enable the identification of defined receptor subtypes. We will summarize the pharmacology of putative receptor isoforms and emphasize the characteristics of functional channels. Knowledge of the complex pharmacology of GABAARs might eventually enable site-directed drug design to further our understanding of GABA-related disorders and of the complex interaction of excitatory and inhibitory mechanisms in neuronal processing.

468 citations

Journal ArticleDOI
TL;DR: Thymol potentiates GABAA receptors through a previously unidentified binding site, providing evidence against actions at the benzodiazepine/β‐carboline or steroid sites.
Abstract: The GABA-modulating and GABA-mimetic activities of the monoterpenoid thymol were explored on human GABAA and Drosophila melanogaster homomeric RDLac GABA receptors expressed in Xenopus laevis oocytes, voltage-clamped at -60 mV. The site of action of thymol was also investigated. Thymol, 1-100 microm, resulted in a dose-dependent potentiation of the EC20 GABA response in oocytes injected with either alpha1beta3gamma2s GABAA subunit cDNAs or the RDLac subunit RNA. At 100 microm thymol, current amplitudes in response to GABA were 416+/-72 and 715+/-85% of controls, respectively. On both receptors, thymol, 100 microm, elicited small currents in the absence of GABA. The EC50 for GABA at alpha1beta3gamma2s GABAA receptors was reduced by 50 microm thymol from 15+/-3 to 4+/-1 microm, and the Hill slope changed from 1.35+/-0.14 to 1.04+/-0.16; there was little effect on the maximum GABA response. Thymol (1-100 microm) potentiation of responses to EC20 GABA for alpha1beta1gamma2s, alpha6beta3gamma2s and alpha1beta3gamma2s human GABAA receptors was almost identical, arguing against actions at benzodiazepine or loreclezole sites. Neither flumazenil, 3-hydroxymethyl-beta-carboline (3-HMC), nor 5alpha-pregnane-3alpha, 20alpha-diol (5alpha-pregnanediol) affected thymol potentiation of the GABA response at alpha1beta3gamma2s receptors, providing evidence against actions at the benzodiazepine/beta-carboline or steroid sites. Thymol stimulated the agonist actions of pentobarbital and propofol on alpha1beta3gamma2s receptors, consistent with a mode of action distinct from that of either compound. These data suggest that thymol potentiates GABAA receptors through a previously unidentified binding site.

456 citations

Network Information
Related Topics (5)
Agonist
53.7K papers, 1.9M citations
75% related
NMDA receptor
24.2K papers, 1.3M citations
75% related
Dopamine
45.7K papers, 2.2M citations
72% related
Glutamate receptor
33.5K papers, 1.8M citations
72% related
Dopaminergic
29K papers, 1.4M citations
71% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20202
20192
20182
20172
20161
20141