Topic

# Low-density parity-check code

About: Low-density parity-check code is a research topic. Over the lifetime, 19865 publications have been published within this topic receiving 331841 citations. The topic is also known as: LDPC codes & Gallager codes.

##### Papers published on a yearly basis

##### Papers

More filters

•

[...]

TL;DR: A simple but nonoptimum decoding scheme operating directly from the channel a posteriori probabilities is described and the probability of error using this decoder on a binary symmetric channel is shown to decrease at least exponentially with a root of the block length.

Abstract: A low-density parity-check code is a code specified by a parity-check matrix with the following properties: each column contains a small fixed number j \geq 3 of l's and each row contains a small fixed number k > j of l's. The typical minimum distance of these codes increases linearly with block length for a fixed rate and fixed j . When used with maximum likelihood decoding on a sufficiently quiet binary-input symmetric channel, the typical probability of decoding error decreases exponentially with block length for a fixed rate and fixed j . A simple but nonoptimum decoding scheme operating directly from the channel a posteriori probabilities is described. Both the equipment complexity and the data-handling capacity in bits per second of this decoder increase approximately linearly with block length. For j > 3 and a sufficiently low rate, the probability of error using this decoder on a binary symmetric channel is shown to decrease at least exponentially with a root of the block length. Some experimental results show that the actual probability of decoding error is much smaller than this theoretical bound.

10,950 citations

••

[...]

TL;DR: The upper bound is obtained for a specific probabilistic nonsequential decoding algorithm which is shown to be asymptotically optimum for rates above R_{0} and whose performance bears certain similarities to that of sequential decoding algorithms.

Abstract: The probability of error in decoding an optimal convolutional code transmitted over a memoryless channel is bounded from above and below as a function of the constraint length of the code. For all but pathological channels the bounds are asymptotically (exponentially) tight for rates above R_{0} , the computational cutoff rate of sequential decoding. As a function of constraint length the performance of optimal convolutional codes is shown to be superior to that of block codes of the same length, the relative improvement increasing with rate. The upper bound is obtained for a specific probabilistic nonsequential decoding algorithm which is shown to be asymptotically optimum for rates above R_{0} and whose performance bears certain similarities to that of sequential decoding algorithms.

6,412 citations

••

[...]

TL;DR: It is proved that sequences of codes exist which, when optimally decoded, achieve information rates up to the Shannon limit, and experimental results for binary-symmetric channels and Gaussian channels demonstrate that practical performance substantially better than that of standard convolutional and concatenated codes can be achieved.

Abstract: We study two families of error-correcting codes defined in terms of very sparse matrices "MN" (MacKay-Neal (1995)) codes are recently invented, and "Gallager codes" were first investigated in 1962, but appear to have been largely forgotten, in spite of their excellent properties The decoding of both codes can be tackled with a practical sum-product algorithm We prove that these codes are "very good", in that sequences of codes exist which, when optimally decoded, achieve information rates up to the Shannon limit This result holds not only for the binary-symmetric channel but also for any channel with symmetric stationary ergodic noise We give experimental results for binary-symmetric channels and Gaussian channels demonstrating that practical performance substantially better than that of standard convolutional and concatenated codes can be achieved; indeed, the performance of Gallager codes is almost as close to the Shannon limit as that of turbo codes

3,699 citations

••

[...]

TL;DR: This work designs low-density parity-check codes that perform at rates extremely close to the Shannon capacity and proves a stability condition which implies an upper bound on the fraction of errors that a belief-propagation decoder can correct when applied to a code induced from a bipartite graph with a given degree distribution.

Abstract: We design low-density parity-check (LDPC) codes that perform at rates extremely close to the Shannon capacity. The codes are built from highly irregular bipartite graphs with carefully chosen degree patterns on both sides. Our theoretical analysis of the codes is based on the work of Richardson and Urbanke (see ibid., vol.47, no.2, p.599-618, 2000). Assuming that the underlying communication channel is symmetric, we prove that the probability densities at the message nodes of the graph possess a certain symmetry. Using this symmetry property we then show that, under the assumption of no cycles, the message densities always converge as the number of iterations tends to infinity. Furthermore, we prove a stability condition which implies an upper bound on the fraction of errors that a belief-propagation decoder can correct when applied to a code induced from a bipartite graph with a given degree distribution. Our codes are found by optimizing the degree structure of the underlying graphs. We develop several strategies to perform this optimization. We also present some simulation results for the codes found which show that the performance of the codes is very close to the asymptotic theoretical bounds.

3,398 citations