scispace - formally typeset
Search or ask a question
Topic

Low-power electronics

About: Low-power electronics is a research topic. Over the lifetime, 8148 publications have been published within this topic receiving 192603 citations. The topic is also known as: Low-power design.


Papers
More filters
01 Sep 2010

2,148 citations

Journal ArticleDOI
TL;DR: In this article, a low-noise low-power biosignal amplifiers capable of amplifying signals in the millihertz-to-kilohertz range while rejecting large dc offsets generated at the electrode-tissue interface is presented.
Abstract: There is a need among scientists and clinicians for low-noise low-power biosignal amplifiers capable of amplifying signals in the millihertz-to-kilohertz range while rejecting large dc offsets generated at the electrode-tissue interface. The advent of fully implantable multielectrode arrays has created the need for fully integrated micropower amplifiers. We designed and tested a novel bioamplifier that uses a MOS-bipolar pseudoresistor element to amplify low-frequency signals down to the millihertz range while rejecting large dc offsets. We derive the theoretical noise-power tradeoff limit - the noise efficiency factor - for this amplifier and demonstrate that our VLSI implementation approaches this limit by selectively operating MOS transistors in either weak or strong inversion. The resulting amplifier, built in a standard 1.5-/spl mu/m CMOS process, passes signals from 0.025Hz to 7.2 kHz with an input-referred noise of 2.2 /spl mu/Vrms and a power dissipation of 80 /spl mu/W while consuming 0.16 mm/sup 2/ of chip area. Our design technique was also used to develop an electroencephalogram amplifier having a bandwidth of 30 Hz and a power dissipation of 0.9 /spl mu/W while maintaining a similar noise-power tradeoff.

1,572 citations

Journal ArticleDOI
David J. Frank1, R.H. Dennard1, E. J. Nowak1, Paul M. Solomon1, Yuan Taur1, Hon-Sum Philip Wong1 
01 Mar 2001
TL;DR: The end result is that there is no single end point for scaling, but that instead there are many end points, each optimally adapted to its particular applications.
Abstract: This paper presents the current state of understanding of the factors that limit the continued scaling of Si complementary metal-oxide-semiconductor (CMOS) technology and provides an analysis of the ways in which application-related considerations enter into the determination of these limits. The physical origins of these limits are primarily in the tunneling currents, which leak through the various barriers in a MOS field-effect transistor (MOSFET) when it becomes very small, and in the thermally generated subthreshold currents. The dependence of these leakages on MOSFET geometry and structure is discussed along with design criteria for minimizing short-channel effects and other issues related to scaling. Scaling limits due to these leakage currents arise from application constraints related to power consumption and circuit functionality. We describe how these constraints work out for some of the most important application classes: dynamic random access memory (DRAM), static random access memory (SRAM), low-power portable devices, and moderate and high-performance CMOS logic. As a summary, we provide a table of our estimates of the scaling limits for various applications and device types. The end result is that there is no single end point for scaling, but that instead there are many end points, each optimally adapted to its particular applications.

1,417 citations

Journal ArticleDOI
25 Oct 2010
TL;DR: This review introduces and summarizes progress in the development of the tunnel field- effect transistors (TFETs) including its origin, current experimental and theoretical performance relative to the metal-oxide-semiconductor field-effect transistor (MOSFET), basic current-transport theory, design tradeoffs, and fundamental challenges.
Abstract: Steep subthreshold swing transistors based on interband tunneling are examined toward extending the performance of electronics systems. In particular, this review introduces and summarizes progress in the development of the tunnel field-effect transistors (TFETs) including its origin, current experimental and theoretical performance relative to the metal-oxide-semiconductor field-effect transistor (MOSFET), basic current-transport theory, design tradeoffs, and fundamental challenges. The promise of the TFET is in its ability to provide higher drive current than the MOSFET as supply voltages approach 0.1 V.

1,389 citations

Journal ArticleDOI
TL;DR: The paper shows how the use of FCS-MPC provides a simple and efficient computational realization for different control objectives in Power Electronics.
Abstract: This paper addresses to some of the latest contributions on the application of Finite Control Set Model Predictive Control (FCS-MPC) in Power Electronics. In FCS-MPC , the switching states are directly applied to the power converter, without the need of an additional modulation stage. The paper shows how the use of FCS-MPC provides a simple and efficient computational realization for different control objectives in Power Electronics. Some applications of this technology in drives, active filters, power conditioning, distributed generation and renewable energy are covered. Finally, attention is paid to the discussion of new trends in this technology and to the identification of open questions and future research topics.

1,331 citations


Network Information
Related Topics (5)
CMOS
81.3K papers, 1.1M citations
96% related
Integrated circuit
82.7K papers, 1M citations
92% related
Transistor
138K papers, 1.4M citations
90% related
Semiconductor memory
45.4K papers, 663.1K citations
87% related
Electronic circuit
114.2K papers, 971.5K citations
87% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20235
202217
202126
202058
201953
201857